线上Kafka消息堆积,Consumer掉线,怎么办?

开发 前端
服务端、客户端都没有特别的异常日志,kafka其他topic的生产和消费都是正常,所以基本可以判断是客户端消费存在问题。

线上kafka消息堆积,所有consumer全部掉线,到底怎么回事?

最近处理了一次线上故障,具体故障表现就是kafka某个topic消息堆积,这个topic的相关consumer全部掉线。

整体排查过程和事后的复盘都很有意思,并且结合本次故障,对kafka使用的最佳实践有了更深刻的理解。

好了,一起来回顾下这次线上故障吧,最佳实践总结放在最后,千万不要错过。

1、现象

线上kafka消息突然开始堆积

消费者应用反馈没有收到消息(没有处理消息的日志)

kafka的consumer group上看没有消费者注册

消费者应用和kafka集群最近一周内没有代码、配置相关变更

2、排查过程

服务端、客户端都没有特别的异常日志,kafka其他topic的生产和消费都是正常,所以基本可以判断是客户端消费存在问题。

所以我们重点放在客户端排查上。

1)arthas在线修改日志等级,输出debug

由于客户端并没有明显异常日志,因此只能通过arthas修改应用日志等级,来寻找线索。

果然有比较重要的发现:

2022-10-25 17:36:17,774 DEBUG [org.apache.kafka.clients.consumer.internals.AbstractCoordinator] - [Consumer clientId=consumer-1, groupId=xxxx] Disabling heartbeat thread

2022-10-25 17:36:17,773 DEBUG [org.apache.kafka.clients.consumer.internals.AbstractCoordinator] - [Consumer clientId=consumer-1, groupId=xxxx] Sending LeaveGroup request to coordinator xxxxxx (id: 2147483644 rack: null)

看起来是kafka-client自己主动发送消息给kafka集群,进行自我驱逐了。因此consumer都掉线了。

2)arthas查看相关线程状态变量用arthas vmtool命令进一步看下kafka-client相关线程的状态。

图片

可以看到 HeartbeatThread线程状态是WAITING,Cordinator状态是UNJOINED。

此时,结合源码看,大概推断是由于消费时间过长,导致客户端自我驱逐了。

于是立刻尝试修改max.poll.records,减少一批拉取的消息数量,同时增大max.poll.interval.ms参数,避免由于拉取间隔时间过长导致自我驱逐。

参数修改上线后,发现consumer确实不掉线了,但是消费一段时间后,还是就停止消费了。

3、最终原因

相关同学去查看了消费逻辑,发现了业务代码中的死循环,确认了最终原因。

消息内容中的一个字段有新的值,触发了消费者消费逻辑的死循环,导致后续消息无法消费。同时,消费阻塞导致消费者自我驱逐,partition重新reblance,所有消费者逐个自我驱逐。

这里核心涉及到kafka的消费者和kafka之间的保活机制,可以简单了解一下。

图片

kafka-client会有一个独立线程HeartbeatThread跟kafka集群进行定时心跳,这个线程跟lisenter无关,完全独立。

根据debug日志显示的“Sending LeaveGroup request”信息,我们可以很容易定位到自我驱逐的逻辑。

图片

HeartbeatThread线程在发送心跳前,会比较一下当前时间跟上次poll时间,一旦大于max.poll.interval.ms 参数,就会发起自我驱逐了。

4、进一步思考

虽然最后原因找到了,但是回顾下整个排查过程,其实并不顺利,主要有两点:

kafka-client对某个消息消费超时能否有明确异常?而不是只看到自我驱逐和rebalance

有没有办法通过什么手段发现 消费死循环?

4.1 kafka-client对某个消息消费超时能否有明确异常?

4.1.1 kafka似乎没有类似机制

我们对消费逻辑进行断点,可以很容易看到整个调用链路。

图片

对消费者来说,主要采用一个线程池来处理每个kafkaListener,一个listener就是一个独立线程。

这个线程会同步处理 poll消息,然后动态代理回调用户自定义的消息消费逻辑,也就是我们在@KafkaListener中写的业务。

图片

所以,从这里可以知道两件事情。

第一点,如果业务消费逻辑很慢或者卡住了,会影响poll。

第二点,这里没有看到直接设置消费超时的参数,其实也不太好做。

因为这里做了超时中断,那么poll也会被中断,是在同一个线程中。所以要么poll和消费逻辑在两个工作线程,要么中断掉当前线程后,重新起一个线程poll。

所以从业务使用角度来说,可能的实现,还是自己设置业务超时。比较通用的实现,可以是在消费逻辑中,用线程池处理消费逻辑,同时用Future get阻塞超时中断。

google了一下,发现kafka 0.8 曾经有consumer.timeout.ms这个参数,但是现在的版本没有这个参数了,不知道是不是类似的作用。

4.1.2 RocketMQ有点相关机制

然后去看了下RocketMQ是否有相关实现,果然有发现。

在RocketMQ中,可以对consumer设置consumeTimeout,这个超时就跟我们的设想有一点像了。

consumer会启动一个异步线程池对正在消费的消息做定时做 cleanExpiredMsg() 处理。

图片

注意,如果消息类型是顺序消费(orderly),这个机制就不生效。

如果是并发消费,那么就会进行超时判断,如果超时了,就会将这条消息的信息通过sendMessageBack() 方法发回给broker进行重试。

图片

如果消息重试超过一定次数,就会进入RocketMQ的死信队列。

spring-kafka其实也有做类似的封装,可以自定义一个死信topic,做异常处理

4.2 有办法快速发现死循环吗?

一般来说,死循环的线程会导致CPU飙高、OOM等现象,在本次故障中,并没有相关异常表现,所以并没有联系到死循环的问题。

那通过这次故障后,对kafka相关机制有了更深刻了解,poll间隔超时很有可能就是消费阻塞甚至死循环导致。

所以,如果下次出现类似问题,消费者停止消费,但是kafkaListener线程还在,可以直接通过arthas的 thread id 命令查看对应线程的调用栈,看看是否有异常方法死循环调用。

5、最佳实践

通过此次故障,我们也可以总结几点kafka使用的最佳实践:

  • 使用消息队列进行消费时,一定需要多考虑异常情况,包括幂等、耗时处理(甚至死循环)的情况。
  • 尽量提高客户端的消费速度,消费逻辑另起线程进行处理,并最好做超时控制。
  • 减少Group订阅Topic的数量,一个Group订阅的Topic最好不要超过5个,建议一个Group只订阅一个Topic。
  • 参考以下说明调整参数值:max.poll.records:降低该参数值,建议远远小于<单个线程每秒消费的条数> * <消费线程的个数> * <max.poll.interval.ms>的积。max.poll.interval.ms: 该值要大于<max.poll.records> / (<单个线程每秒消费的条数> * <消费线程的个数>)的值。
责任编辑:武晓燕 来源: 阿丸笔记
相关推荐

2021-02-24 08:38:48

Kafka消息Consumer

2022-05-10 07:31:49

消息队列CPUQPS

2024-03-20 08:33:00

Kafka线程安全Rebalance

2020-09-29 12:15:13

生死锁MySQL

2024-12-12 14:56:48

消息积压MQ分区

2022-07-14 10:23:39

数据

2022-07-14 10:16:22

Flink

2022-06-24 09:22:15

MySQL自增id

2023-12-21 08:01:41

RocketMQ消息堆积

2017-02-21 13:11:43

SDN网络体系SDN架构

2009-11-03 08:56:02

linux死机操作系统

2022-12-19 11:31:57

缓存失效数据库

2024-04-22 08:17:23

MySQL误删数据

2022-05-19 08:01:49

PostgreSQL数据库

2019-10-12 09:50:46

Redis内存数据库

2018-01-28 20:39:39

戴尔

2022-07-05 11:48:47

MySQL死锁表锁

2015-10-22 09:09:59

BAT投资VC

2021-11-08 15:38:15

消息延迟堆积

2017-12-21 20:01:38

润乾报表
点赞
收藏

51CTO技术栈公众号