斯坦福/谷歌大脑:两次蒸馏,引导扩散模型采样提速256倍!

人工智能 新闻
斯坦福、谷歌大脑新作:无需分类器,两步蒸馏,将扩散模型采样速度提升256倍。

最近,无分类器的指导扩散模型(classifier-free guided diffusion models)在高分辨率图像生成方面非常有效,并且已经被广泛用于大规模扩散框架,包括DALL-E 2、GLIDE和Imagen。

然而,无分类器指导扩散模型的一个缺点是它们在推理时的计算成本很高。因为它们需要评估两个扩散模型——一个类别条件模型(class-conditional model) 和一个无条件模型(unconditional model),而且需要评估数百次。

为了解决这个问题,斯坦福大学和谷歌大脑的学者提出使用两步蒸馏(two-step distillation)的方法来提升无分类器指导扩散模型的采样效率。

图片

论文地址:https://arxiv.org/abs/2210.03142

如何将无分类器指导扩散模型提炼成快速采样的模型?

首先,对于一个预先训练好的无分类器指导模型,研究者首先学习了一个单一的模型,来匹配条件模型和无条件模型的组合输出。

随后,研究者逐步将这个模型蒸馏成一个采样步骤更少的扩散模型。

可以看到,在ImageNet 64x64和CIFAR-10上,这种方法能够在视觉上生成与原始模型相当的图像。

只需4个采样步骤,就能获得与原始模型相当的FID/IS分数,而采样速度却高达256倍。

图片

可以看到,通过改变指导权重w,研究者蒸馏的模型能够在样本多样性和质量之间进行权衡。而且只用一个取样步骤,就能获得视觉上愉悦的结果。

扩散模型的背景

通过来自数据分布图片的样本x,噪声调度函数图片研究者通过最小化加权均方差来训练了具有参数θ的扩散模型图片

图片

其中图片是信噪比,图片图片是预先指定的加权函数。

一旦训练了扩散模型图片,就可以使用离散时间DDIM采样器从模型中采样。

具体来说,DDIM采样器从 z1 ∼ N (0,I)开始,更新如下

图片

其中,N是采样步骤的总数。使用图片,会生成最终样本。

无分类器指导是一种有效的方法,可以显著提高条件扩散模型的样本质量,已经广泛应用于包括GLIDE,DALL·E 2和Imagen。

它引入了一个指导权重参数图片来衡量样本的质量和多样性。为了生成样本,无分类器指导在每个更新步骤都会使用图片作为预测模型,来评估条件扩散模型图片和联合训练的图片

由于每次采样更新都需要评估两个扩散模型,因此使用无分类器指导进行采样通常很昂贵。

为了解决这个问题,研究者使用了渐进式蒸馏(progressive distillation)  ,这是一种通过重复蒸馏提高扩散模型采样速度的方法。

在以前,这种方法不能直接被直接用在引导模型的蒸馏上,也不能在确定性DDIM采样器以外的采样器上使用。而在这篇论文中,研究者解决了这些问题。

蒸馏无分类器的指导扩散模型

他们的办法是,将无分类器的指导扩散模型进行蒸馏。

对于一个训练有素的教师引导模型图片,他们采取了两个步骤。

第一步,研究者引入了一个连续时间的学生模型图片,它具有可学习的参数η1,来匹配教师模型在任意时间步长t ∈ [0, 1] 的输出。指定一系列他们有兴趣的指导强度图片后,他们使用以下目标来优化学生模型。

图片

其中图片

为了结合指导权重w,研究者引入了w条件模型,其中w作为学生模型的输入。为了更好地捕捉特征,他们将傅里叶嵌入应用w,然后用Kingma等人使用的时间步长的方式,把它合并到扩散模型的主干中。

由于初始化在性能中起着关键作用,研究者初始化学生模型时,使用的是与教师条件模型相同的参数(除了新引入的与w-conditioning相关的参数)。

第二步,研究者设想了一个离散的时间步长场景,并且通过每次将采样步数减半,逐步将学习模型从第⼀步图片蒸馏成具有可学习参数η2、步⻓更少的学⽣模型图片

其中,N表⽰采样步骤的数量,对于图片图片,研究者开始训练学生模型,让它用一步来匹配教师模型的两步DDIM采样的输出(例如:从t/N到t - 0.5/N,从t - 0.5/N到t - 1/N)。

将教师模型中的2N个步骤蒸馏成学生模型中的N个步骤以后,我们可以将新的N-step学生模型作为新的教师模型,然后重复同样的过程,将教师模型蒸馏成N/2-step的学生模型。在每⼀步,研究者都会⽤教师模型的参数来初始化学⽣模型。

N-step的确定性和随机采样

⼀旦模型图片被训练出来,对于图片,研究者就可以通过DDIM更新规则来执行采样。研究者注意到,对于蒸馏模型图片,这个采样过程在给定初始化图片的情况下是确定的。

另外,研究者也可以进行N步的随机采样。使用两倍于原始步长的确定性采样步骤( 即与N/2-step确定性采样器相同),然后使用原始步长进行一次随机步回(即用噪声扰动)。

图片,当t > 1/N时,可用以下的更新规则——

图片

其中,图片

当t=1/N时,研究者使用确定性更新公式,从图片得出图片

值得注意的是,我们注意到,与确定性的采样器相比,执行随机采样需要在稍微不同的时间步长内评估模型,并且需要对边缘情况的训练算法进行小的修改。

其他蒸馏⽅法

还有一个直接将渐进式蒸馏应⽤于引导模型的方法,即遵循教师模型的结构,直接将学⽣模型蒸馏成⼀个联合训练的条件和⽆条件模型。研究者尝试了之后,发现此⽅法效果不佳。

实验和结论

模型实验在两个标准数据集上进行:ImageNet(64*64)和 CIFAR 10。

实验中探索了指导权重w的不同范围,并观察到所有的范围都有可比性,因此使用[wmin, wmax] = [0, 4]进行实验。使用信噪比损失训练第一步和第二步模型。

基线标准包括DDPM ancestral采样和DDIM采样。

为了更好地理解如何纳入指导权重w,使用一个固定的w值训练的模型作为参照。

为了进行公平比较,实验对所有的方法使用相同的预训练教师模型。使用U-Net(Ronneberger等人,2015)架构作为基线,并使用相同的U-Net主干,引入嵌入了w的结构作为两步学生模型。

图片

上图为所有方法在ImageNet 64x64上的表现。其中D和S分别代表确定性和随机性采样器。

在实验中,以指导区间w∈[0, 4]为条件的模型训练,与w为固定值的模型训练表现相当。在步骤较少时,我们的方法明显优于DDIM基线性能,在8到16个步骤下基本达到教师模型的性能水平。

图片

由FID和IS分数评估的ImageNet 64x64采样质量

图片

由FID和IS评分评估的CIFAR-10采样质量

我们还对教师模型的编码过程进行蒸馏,并进行了风格转移的实验。具体来说,为了在两个领域A和B之间进行风格转换,用在领域A上训练的扩散模型对领域A的图像进行编码,然后用在领域B上训练的扩散模型进行解码。

图片

图片

由于编码过程可以理解为颠倒了的DDIM的采样过程,我们对具有无分类器指导的编码器和解码器都进行了蒸馏,并与DDIM编码器和解码器进行比较,如上图所示。我们还探讨了对引导强度w的改动对性能的影响。

总之,我们提出的引导扩散模型的蒸馏方法,以及一种随机采样器,从蒸馏后的模型中采样。从经验上看,我们的方法只用了一个步骤就能实现视觉上的高体验采样,只用8到16个步骤就能获得与教师相当的FID/IS分数。

责任编辑:张燕妮 来源: 新智元
相关推荐

2024-11-29 16:35:50

模型训练

2022-10-08 12:38:23

模型开源

2022-07-14 15:08:23

AI模型

2024-01-24 13:17:00

AI技术

2024-04-24 09:47:36

2023-07-18 14:18:00

Attention模型图像

2023-02-14 09:45:11

模型测试

2013-01-31 09:45:14

斯坦福超级电脑百万内核

2009-05-19 09:06:41

Apple斯坦福iPhone

2012-03-21 21:38:27

苹果

2019-12-16 14:33:01

AI人工智能斯坦福

2024-05-13 12:58:30

2024-05-06 07:10:00

李飞飞智能空间

2024-09-26 10:23:46

2021-10-13 09:38:13

人工智能机器学习技术

2020-03-23 15:19:41

人工智能AI开发者

2023-10-18 09:25:08

模型推理

2023-03-15 10:26:00

模型开源

2022-08-11 13:11:48

斯坦福大学英伟达VR 头显

2017-11-28 14:18:29

点赞
收藏

51CTO技术栈公众号