聊一聊十个Pandas的小技巧

数据库 其他数据库
pandas是数据科学家必备的数据处理库,我们今天总结了10个在实际应用中肯定会用到的技巧。

pandas是数据科学家必备的数据处理库,我们今天总结了10个在实际应用中肯定会用到的技巧。

1、Select from table where f1=’a’ and f2=’b’

使用AND或OR选择子集

dfb = df.loc[(df.Week == week) & (df.Day == day)]

OR的话是这样

dfb = df.loc[(df.Week == week)|(df.Day == day)]

2、Select where in

从一个df中选择一个包含在另外一个df的数据,例如下面的sql

select * from table1 where field1 in (select field1 from table2)

我们有一个名为“days”的df,它包含以下值。

如果有第二个df:

可以直接用下面的方式获取

days = [0,1,2]
df[df(days)]

3、Select where not in

就像IN一样,我们肯定也要选择NOT IN,这个可能是更加常用的一个需求,但是却很少有文章提到,还是使用上面的数据:

days = [0,1,2]
df[~df(days)]

使用~操作符就可以了

4、select sum(*) from table group by

分组统计和求和也是常见的操作,但是使用起来并不简单

df(by=['RepID','Week','CallCycleDay']).sum()

如果想保存结果或稍后使用它们并引用这些字段,请添加 as_index=False

df.groupby(by=['RepID','Week','CallCycleDay'], as_index=False).sum()

图片

使用as_index= false,可以表的形式保存列。

5、从一个表更另外一个表的字段

我们从一个df中更改了一些值,现在想要更新另外一个df,这个操作就很有用。

dfb = dfa[dfa.field1='somevalue'].copy()
dfb['field2'] = 'somevalue'
dfa.update(dfb)

这里的更新是通过索引匹配的

6、使用apply/lambda创建新字段

我们创建了一个名为address的新字段,它是几个字段进行拼接的。

dfa['address'] = dfa.apply(lambda row: row['StreetName'] + ', ' +

7、插入新行

插入新数据的最佳方法是使用concat。我们可以用有pd. datafframe .from_records一将新行转换为df。

newRow = row.copy()
newRow.CustomerID = str(newRow.CustomerID)+'-'+str(x)
newRow.duplicate = True
df = pd.concat([df,pd.DataFrame.from_records([newRow])])

8、更改列的类型

可以使用astype函数将其快速更改列的数据类型

df = pd.read_excel(customers_.xlsx')
df['Longitude'] = df['Longitude'].astype(str)
df['Latitude'] = df['Longitude'].astype(str)

9、删除列

使用drop可以删除列

def cleanColumns(df):
for col in df.columns:


return df

10、地图上标注点

这个可能是最没用的技巧,但是他很好玩。

这里我们有一些经纬度的数据。

图片

现在我们把它根据经纬度在地图上进行标注:

df_clustercentroids = pd.read_csv(centroidFile)
lst_elements = sorted(list(dfm.cluster2.unique()))
lst_colors = ['#%06X' % np.random.randint(0, 0xFFFFFF) for i in range(len(lst_elements))]
dfm["color"] = dfm["cluster2"]
dfm["color"] = dfm["color"].apply(lambda x:lst_colors[lst_elements.index(x)])

m = folium.Map(locatinotallow=[dfm.iloc[0].Latitude,dfm.iloc[0].Longitude], zoom_start = 9)

for index, row in dfm.iterrows():
folium.CircleMarker(locatinotallow=[float(row['Latitude']), float(row['Longitude'])],radius=4,popup=str(row['RepID']) + '|' +str(row.CustomerID),color=row['color'],fill=True,fill_color=row['color']
).add_to(m)

for index, row in df_clustercentroids.iterrows():
folium.Marker(locatinotallow=[float(row['Latitude']), float(row['Longitude'])],popup=str(index) + '|#=' + str(dfm.loc[dfm.cluster2==index].groupby(['cluster2'])['CustomerID'].count().iloc[0]),icnotallow=folium.Icon(color='black',icon_color=lst_colors[index]),tooltip=str(index) + '|#=' + str(dfm.loc[dfm.cluster2==index].groupby(['cluster2'])['CustomerID'].count().iloc[0])).add_to(m)

m

结果如下

图片

责任编辑:华轩 来源: DeepHub IMBA
相关推荐

2024-07-24 11:40:33

2022-09-19 16:24:33

数据可视化Matplotlib工具

2018-04-27 09:22:21

数据存储技巧

2021-08-04 09:32:05

Typescript 技巧Partial

2019-03-21 11:04:22

安全标准信息

2023-01-09 08:48:00

IT决议结构

2024-01-30 00:40:10

2023-03-24 16:41:36

Pandas技巧数据处理

2020-09-08 06:54:29

Java Gradle语言

2023-07-06 13:56:14

微软Skype

2022-08-25 10:37:00

CIOIT领导者

2013-09-29 13:36:07

虚拟SAN

2010-12-06 09:49:28

Linux快速启动

2022-06-27 07:50:16

链表节点测试

2018-06-07 13:17:12

契约测试单元测试API测试

2023-09-22 17:36:37

2020-05-22 08:16:07

PONGPONXG-PON

2021-01-28 22:31:33

分组密码算法

2022-01-11 15:44:15

JavaScript图表库数据

2020-09-15 12:45:48

系统LinuxUnix
点赞
收藏

51CTO技术栈公众号