做数据分析,如何给业务提【建议】

大数据 数据分析
如果是业务部门听到这种命令,本能反应是:“这里有一个问题,老板想提价,我要怎么提价。”但数据分析师收到这种需求,就不是这么解读的。因为数据分析师首先要保证的是:领导决策建立在正确的事实之上,其次才是保证决策建议的可行性。

很多同学都讨厌当工具人,然鹅每次遇到要提建议的时候就怂了,除了“指标降了,要搞高”,不知道还能说啥。今天拿个具体问题,给大家详细介绍下:如何从数据得出可行的建议。

问题场景:某互联网垂直电商企业,运营的老板表示:A商品最近销量挺好,想提高一下价格,以提升该类产品的整体利润。现在作为数据分析师,你接到了这个需求,问:该如何做?

一、问题解析

首先,同学们要注意:这里有几个问题?

如果是业务部门听到这种命令,本能反应是:“这里有一个问题,老板想提价,我要怎么提价。”但数据分析师收到这种需求,就不是这么解读的。因为数据分析师首先要保证的是:领导决策建立在正确的事实之上,其次才是保证决策建议的可行性。

对数据分析师而言,这里有两个问题:

问题一:老板口中的“最近销量挺好”,到底是不是个事实

问题二:在问题一成立的前提下,思考如何落地

二、解题第一步:确认事实

在现实中,很多商业感觉并非建立在事实之上。此时、此刻,销量是不是真的很好,是需要进一步验证的。

并且这个任务最适合数据分析来做,业务部门捕捉商机,可能依赖的是自己的经验、判断、嗅觉,而数据分析捕捉商机,一定是靠数据说话。

要验证问题一,需要排除的假设是:

1、不是真的好(仅仅比其他品类多了一点点)

2、是真的好,但不是现在好(这个信息过时了)

3、是现在好,但属于暂时/季节性/偶然性好(预计不持久)

4、是现在好,稳定的好,但已有资源投入(没有涨价空间)

整个逻辑用MECE法归纳如下图:

图片

很多新手数据分析师会忽略这一步。实际上,这一步非常体现数据分析师的价值。老板只是随口一说,数据分析师就把各种可能性一一排除,对老板来说体验非常好。显得数据分析的工作做得很深入。

实际上,何时涨价是有固定套路的,一般参照产品生命周期(如下图):

图片

  • n 如果A品类生命周期走势明显优于过往同款,可涨
  • n 如果处于生命周期的早期(上市期、成长期)可涨
  • n 如果A品类处于供不应求状态(库存周转快、销量好)可涨

反之,如果A处于生命周期后期、库存仍有富余、表现平平,则不应考虑涨价。可考虑搭售、满减等手段。

三、解题第二步:区分经验与测试

如果确认了第一步,可以做第二步工作:确定分析方向。

第二步要先确认一点:过往有没有做过类似调价?

如果有,则基于上次类似调价场景,分析本次调价预计影响与可行性。

如果没有,就没有历史数据参考,则需要设计一个数据实验,验证方案可行性。

这一点很能体现数据分析与业务的思路区别。如果换了业务,可能通过与客户沟通、对用户的洞察、对商品的理解,能直接作出判断。但数据分析思考问题,一定是从数据出发。如果有历史数据,就基于历史数据分析。如果没有,就先做测试,收集数据再分析。

当然,实际落地的时候,两者可以结合。比如业务先提一个涨价方案,数据分析分两步论证:

1.事前论证:这个方案没有致命伤

2.事后论证:这个方案可以通过XX实验验证

这样就能推动方案落地了。

四、解题第三步:事前论证

事前论证分两种情况

1.在有做过调价情况下,总结历史经验,给出建议

2.在没有做过调价情况下,给出可以调价的范畴,避免踩雷

方案要落地,需要时间、地点、人物、起因、经过、结果六要素齐全。因此在复盘历史经验的时候,要做细一点,上次调价的六要素,要分析齐全(如下图)。

图片

在避免踩雷的时候,主要是利用数据剔除一些明显不合理的设想。理论上,消费者都不傻,调价会导致销量下降;销量下降又会导致库存增加,周转时间变长;周转时间变长,又会增加商品过气的风险,可能进一步影响销量。虽然没有数据证明,但业务方在做方案的时候,得思考到这些点。

典型的不合理设想,比如:

1、涨价设定太高,甚至达到了更高档商品价位

2、销量没有调整,默认涨价不会影响销量

3、销量预计太多,没有考虑销量下降导致库存增加

这些明显BUG,大部分来自无经验情况下,业务方过于乐观地拍脑袋。作为数据分析师,理应对这种乐观的YY提预警,至少让他们意识到问题。

五、解题第四步:事后论证

如果没有历史数据积累,则要设计数据实验,验证效果。注意:数据实验的设计,一定需要业务方的参与。因为涨价本身是个业务动作,有明涨/暗涨两种基本方式。

明涨:直接调价

暗涨:通过推升级版、plus版、减少优惠券投放等形式,暗中调价

这些手段可能产生的效果是不同的。如果是明涨,则可以直接测试所有用户对价格敏感度。如果是暗涨,意味着只有一部分用户会响应涨价,需要做用户分群,观察部分用户的反应(如下图):

图片

理论上讲,暗涨更容易让用户感情上接受,毕竟明涨显得太割韭菜了,颇有囤积居奇之感。但实际操作上,暗涨需要做新的营销方案,很有可能新方案做砸了,导致涨价策略失败,业务方会承担责任。

所以业务方会倾向于明涨,并且要求数据分析师给出预测:到底涨多少,ROI最大化。

这里一定要给业务方讲清楚:没有历史数据,则无法分析,一定要做测试。不要试图用拍脑袋/其他拐弯抹角的方法回避这个问题。价格弹性一定是测试出来的,没有测试就下结论,策略失败的风险就是数据分析师自己背……

六、小结 

综上可以看出,一个简单的涨价,需要大量的、细致的分析,具体到各种场景。很多新手不考虑这么多场景,只是拿一个近一周/一个月销量,然后开始拍脑袋:“可能涨价以后会减少销量吧……”

这么粗糙地工作,很容易被领导各种diss,诸如:

“考虑和其他品类差异没有?”

“会不会只是短期效果?”

“有没有证据证明真的能涨价?”

数据分析师会很委屈地说:“那你也没提呀”

此刻领导再怼一句:“你就不多想想!”

这么一来一回,信任就荡然无存了。

我们常说:数据分析师就是企业的军师,你看小说里,主公问军师意见,军师都有上中下三策,上策里还要分上上策、上中策、上下策。工作做得非常细致,场景思考得很全面,这才是一个合格的军师应达到的标准,以上,与大家共勉。

责任编辑:武晓燕 来源: 接地气的陈老师
相关推荐

2022-04-02 11:47:11

数据分析业务岗位

2022-05-11 11:33:53

数据分析业绩业务

2022-08-16 11:33:43

数据分析业务数据

2021-10-28 19:22:35

数据分析

2020-07-22 07:49:14

数据分析技术IT

2023-12-29 10:04:47

数据分析

2021-02-22 17:29:41

体系数据分析模块

2018-05-18 09:18:00

数据分析报告数据收集

2022-03-08 23:46:06

数据分析大数据

2022-08-29 07:11:05

业务数据模板

2020-05-15 15:09:51

R语言数据分析

2020-10-20 11:27:44

大数据

2017-05-02 17:22:05

数据

2024-06-26 01:09:36

2019-04-15 13:40:47

大数据分析建模数据数据分析

2017-05-19 08:45:34

R用户Python数据分析

2021-06-07 11:42:41

数据分析业务

2023-07-06 14:52:36

数据分析师SQL

2023-02-26 00:00:03

数据分析数据模型

2018-11-20 14:24:46

数据分析数据库统计
点赞
收藏

51CTO技术栈公众号