在两行Python代码中应用 40 个机器学习模型

人工智能 机器学习
我们将使用lazypredict库,它允许我们只用一行代码在我们的数据集上实现许多机器学习模型,本文将演示lazypredict的快速使用。

我们将使用lazypredict库,它允许我们只用一行代码在我们的数据集上实现许多机器学习模型,本文将演示lazypredict的快速使用。

步骤1、使用以下命令安装lazypredict 库:

pip install lazypredict

步骤2、导入pandas库,以加载我们的机器学习数据集。

数据集链接:https ://raw.githubusercontent.com/tirthajyoti/Machine-Learning-with-Python/master/Datasets/Mall_Customers.csv

import pandas as pd
df=pd.read_csv("Mall_Customers.csv")

步骤3、查看机器学习数据集前几行。

df.head()

步骤4、拆分训练集和测试集。这里 Y 变量是 Spending Score 列,而其余列是 X 变量。

from sklearn.model_selection import train_test_split
x=df.loc[:,df.columns!='Spending Score (1-100)']
y=df['Spending Score (1-100)']


x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

步骤5、让我们导入之前安装的lazypredict库,lazypredict里面有两个类,一个是Classification类,一个是Regression类。

import lazypredict
from lazypredict.Supervised import LazyRegressor
from lazypredict.Supervised import LazyClassifier

导入后,我们将使用 LazyRegressor,因为我们正在处理回归问题,如果您处理的分类问题,这两种类型的问题都需要类似的步骤。

multiple_ML_model=LazyRegressor(verbose=0,ignore_warnings=True,predictions=True)
models,predictions=multiple_ML_model.fit(x_train,x_test,y_train,y_test)

在这里,prediction = True意味着您想要获得每个模型的准确性并想要对每个模型进行预测。

模型的变量包含每个模型的准确度,以及其他一些重要的信息。

models

图片

如您所见,它已经在我的回归问题上实现了42 个 机器学习模型,本指南更侧重于如何测试许多模型而不是提高它们的准确性。

查看每个机器学习模型的预测如下:

predictions

图片

您可以使用这些预测来创建混淆矩阵。

如果您正在处理分类问题,这就是您使用lazypredict 库的方式。

multiple_ML_model=LazyClassifier(verbose=0,ignore_warnings=True,predictions=True)
models,predictions=multiple_ML_model.fit(x_train,x_test,y_train,y_test)

要记住的关键点:

  1. 该库仅用于测试目的,为您提供有关哪种模型在您的数据集上表现良好的信息。
  2. 因为我将要使用的库需要的是特定版本,所以建议使用一个单独环境。
责任编辑:华轩 来源: 不靠谱的猫
相关推荐

2023-09-12 14:58:00

Redis

2021-06-18 10:12:09

JS代码前端

2019-06-06 08:52:00

2024-02-20 12:49:00

CSS函数前端

2020-11-10 08:37:05

Python线性回归机器学习

2024-03-04 13:21:00

模型训练

2022-03-18 17:53:14

机器学习物联网工业物联网

2022-04-18 11:36:43

机器学习制造业人工智能

2017-04-14 08:33:47

2021-07-21 11:25:17

机器学习?AI人工智能

2018-03-15 13:31:48

润乾LinuxGREP搜索

2022-03-09 14:57:53

Numbapython

2021-04-13 09:00:00

机器学习铁路技术

2020-02-27 14:47:11

人工智能机器学习故障检测

2024-09-30 05:43:44

2021-01-15 05:36:48

MySQL错位数据库

2023-10-04 10:38:38

模型方法

2017-03-28 21:03:35

代码React.js

2020-04-17 14:48:30

代码机器学习Python
点赞
收藏

51CTO技术栈公众号