LIMIT和OFFSET分页性能差!今天来介绍如何高性能分页

数据库 其他数据库
数据量大的时候不能使用OFFSET/LIMIT来进行分页,因为OFFSET越大,查询时间越久。当然不能说所有的分页都不可以,如果你的数据就那么几千、几万条,那就很无所谓,随便使用。

前言

之前的大多数人分页采用的都是这样:

SELECT * FROM table LIMIT 20 OFFSET 50

可能有的小伙伴还是不太清楚LIMIT和OFFSET的具体含义和用法,我介绍一下:

  • LIMIT X 表示: 读取 X 条数据
  • LIMIT X, Y 表示: 跳过 X 条数据,读取 Y 条数据
  • LIMIT Y OFFSET X 表示: 跳过 X 条数据,读取 Y 条数据

对于简单的小型应用程序和数据量不是很大的场景,这种方式还是没问题的。

但是你想构建一个可靠且高效的系统,一定要一开始就要把它做好。

今天我们将探讨已经被广泛使用的分页方式存在的问题,以及如何实现高性能分页。

LIMIT和OFFSET有什么问题

OFFSET 和 LIMIT 对于数据量少的项目来说是没有问题的,但是,当数据库里的数据量超过服务器内存能够存储的能力,并且需要对所有数据进行分页,问题就会出现,为了实现分页,每次收到分页请求时,数据库都需要进行低效的全表遍历。

全表遍历就是一个全表扫描的过程,就是根据双向链表把磁盘上的数据页加载到磁盘的缓存页里去,然后在缓存页内部查找那条数据。这个过程是非常慢的,所以说当数据量大的时候,全表遍历性能非常低,时间特别长,应该尽量避免全表遍历。

这意味着,如果你有 1 亿个用户,OFFSET 是 5 千万,那么它需要获取所有这些记录 (包括那么多根本不需要的数据),将它们放入内存,然后获取 LIMIT 指定的 20 条结果。

为了获取一页的数据:10万行中的第5万行到第5万零20行需要先获取 5 万行,这么做非常低效!

初探LIMIT查询效率

数据准备

本文测试使用的环境:

[root@zhyno1 ~]# cat /etc/system-release
CentOS Linux release 7.9.2009 (Core)

[root@zhyno1 ~]# uname -a
Linux zhyno1 3.10.0-1160.62.1.el7.x86_64 #1 SMP Tue Apr 5 16:57:59 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux

测试数据库采用的是(存储引擎采用InnoDB,其它参数默认):

mysql> select version();
+-----------+
| version() |
+-----------+
| 8.0.25-16 |
+-----------+
1 row in set (0.00 sec)

表结构如下:

CREATE TABLE `limit_test` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`column1` decimal(11,2) NOT NULL DEFAULT '0.00',
`column2` decimal(11,2) NOT NULL DEFAULT '0.00',
`column3` decimal(11,2) NOT NULL DEFAULT '0.00',
PRIMARY KEY (`id`)
)ENGINE=InnoDB

mysql> DESC limit_test;
+---------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------+---------------+------+-----+---------+----------------+
| id | int | NO | PRI | NULL | auto_increment |
| column1 | decimal(11,2) | NO | | 0.00 | |
| column2 | decimal(11,2) | NO | | 0.00 | |
| column3 | decimal(11,2) | NO | | 0.00 | |
+---------+---------------+------+-----+---------+----------------+
4 rows in set (0.00 sec)

插入350万条数据作为测试:

mysql> SELECT COUNT(*) FROM limit_test;
+----------+
| COUNT(*) |
+----------+
| 3500000 |
+----------+
1 row in set (0.47 sec)

开始测试

首先偏移量设置为0,取20条数据(中间输出省略):

mysql> SELECT * FROM limit_test LIMIT 0,20;
+----+----------+----------+----------+
| id | column1 | column2 | column3 |
+----+----------+----------+----------+
| 1 | 50766.34 | 43459.36 | 56186.44 |
#...中间输出省略
| 20 | 66969.53 | 8144.93 | 77600.55 |
+----+----------+----------+----------+
20 rows in set (0.00 sec)

可以看到查询时间基本忽略不计,于是我们要一步一步的加大这个偏移量然后进行测试,先将偏移量改为10000(中间输出省略):

mysql> SELECT * FROM limit_test LIMIT 10000,20;
+-------+----------+----------+----------+
| id | column1 | column2 | column3 |
+-------+----------+----------+----------+
| 10001 | 96945.17 | 33579.72 | 58460.97 |
#...中间输出省略
| 10020 | 1129.85 | 27087.06 | 97340.04 |
+-------+----------+----------+----------+
20 rows in set (0.00 sec)

可以看到查询时间还是非常短的,几乎可以忽略不计,于是我们将偏移量直接上到340W(中间输出省略):

mysql> SELECT * FROM limit_test LIMIT 3400000,20;
+---------+----------+----------+----------+
| id | column1 | column2 | column3 |
+---------+----------+----------+----------+
| 3400001 | 5184.99 | 67179.02 | 56424.95 |
#...中间输出省略
| 3400020 | 8732.38 | 71035.71 | 52750.14 |
+---------+----------+----------+----------+
20 rows in set (0.73 sec)

这个时候就可以看到非常明显的变化了,查询时间猛增到了0.73s。

分析耗时的原因

根据下面的结果可以看到三条查询语句都进行了全表扫描:

mysql> EXPLAIN SELECT * FROM limit_test LIMIT 0,20;
+----+-------------+------------+------------+------+---------------+------+---------+------+---------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+------+---------------+------+---------+------+---------+----------+-------+
| 1 | SIMPLE | limit_test | NULL | ALL | NULL | NULL | NULL | NULL | 3491695 | 100.00 | NULL |
+----+-------------+------------+------------+------+---------------+------+---------+------+---------+----------+-------+
1 row in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT * FROM limit_test LIMIT 10000,20;
+----+-------------+------------+------------+------+---------------+------+---------+------+---------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+------+---------------+------+---------+------+---------+----------+-------+
| 1 | SIMPLE | limit_test | NULL | ALL | NULL | NULL | NULL | NULL | 3491695 | 100.00 | NULL |
+----+-------------+------------+------------+------+---------------+------+---------+------+---------+----------+-------+
1 row in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT * FROM limit_test LIMIT 3400000,20;
+----+-------------+------------+------------+------+---------------+------+---------+------+---------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+------+---------------+------+---------+------+---------+----------+-------+
| 1 | SIMPLE | limit_test | NULL | ALL | NULL | NULL | NULL | NULL | 3491695 | 100.00 | NULL |
+----+-------------+------------+------------+------+---------------+------+---------+------+---------+----------+-------+
1 row in set, 1 warning (0.00 sec)

此时就可以知道的是,在偏移量非常大的时候,就像案例中的LIMIT 3400000,20这样的查询。

此时MySQL就需要查询3400020行数据,然后在返回最后20条数据。

前边查询的340W数据都将被抛弃,这样的执行结果可不是我们想要的。

接下来就是优化大偏移量的性能问题

优化

你可以这样做:

SELECT * FROM limit_test WHERE id>10 limit 20

这是一种基于指针的分页。你要在本地保存上一次接收到的主键 (通常是一个 ID) 和 LIMIT,而不是 OFFSET 和 LIMIT,那么每一次的查询可能都与此类似。

为什么?因为通过显式告知数据库最新行,数据库就确切地知道从哪里开始搜索(基于有效的索引),而不需要考虑目标范围之外的记录。

我们再来一次测试(中间输出省略):

mysql> SELECT * FROM limit_test WHERE id>3400000 LIMIT 20;
+---------+----------+----------+----------+
| id | column1 | column2 | column3 |
+---------+----------+----------+----------+
| 3400001 | 5184.99 | 67179.02 | 56424.95 |
#...中间输出省略
| 3400020 | 8732.38 | 71035.71 | 52750.14 |
+---------+----------+----------+----------+
20 rows in set (0.00 sec)

mysql> EXPLAIN SELECT * FROM limit_test WHERE id>3400000 LIMIT 20;
+----+-------------+------------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
| 1 | SIMPLE | limit_test | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 185828 | 100.00 | Using where |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

返回同样的结果,第一个查询使用了0.73 sec,而第二个仅用了0.00 sec。

注意:如果我们的表没有主键,比如是具有多对多关系的表,那么就使用传统的 OFFSET/LIMIT 方式,只是这样做存在潜在的慢查询问题。所以建议在需要分页的表中使用自动递增的主键,即使只是为了分页。

再优化

类似于查询 SELECT * FROM table_name WHERE id > 3400000 LIMIT 20; 这样的效率非常快,因为主键上是有索引的,但是这样有个缺点,就是ID必须是连续的,并且查询不能有WHERE语句,因为WHERE语句会造成过滤数据。那使用场景就非常的局限了,于是我们可以这样:

使用覆盖索引优化

MySQL的查询完全命中索引的时候,称为覆盖索引,是非常快的,因为查询只需要在索引上进行查找,之后可以直接返回,而不用再回数据表拿数据。因此我们可以先查出索引的 ID,然后根据 Id 拿数据。

ELECT * FROM (SELECT id FROM table_name LIMIT 3400000,20) a LEFT JOIN table_name b ON a.id = b.id;

#或者是

SELECT * FROM table_name a INNER JOIN (SELECT id FROM table_name LIMIT 3400000,20) b USING (id);

总结

数据量大的时候不能使用OFFSET/LIMIT来进行分页,因为OFFSET越大,查询时间越久。

当然不能说所有的分页都不可以,如果你的数据就那么几千、几万条,那就很无所谓,随便使用。

如果我们的表没有主键,比如是具有多对多关系的表,那么就使用传统的 OFFSET/LIMIT 方式。

这种方法适用于要求ID为数值类型,并且查出的数据ID连续的场景且不能有其他字段的排序。

责任编辑:武晓燕 来源: GreatSQL社区
相关推荐

2021-06-09 06:41:11

OFFSETLIMIT分页

2022-10-27 21:34:28

数据库机器学习架构

2020-09-18 07:01:38

分页offsetlimit

2023-02-26 23:43:43

MySQL数据库分页查询

2019-03-14 15:38:19

ReactJavascript前端

2010-05-25 15:12:22

MySQL分页

2009-01-05 10:00:11

JSP优化Servlet性能优化

2011-04-18 09:18:07

优化性能提高

2021-05-06 21:26:00

BcacheCeph存储

2011-02-23 12:59:08

JSJavaScript浏览器

2010-10-27 10:11:07

Oracle分页查询

2009-12-23 10:29:01

WPF应用程序

2019-03-01 11:03:22

Lustre高性能计算

2017-12-05 08:41:14

高性能存储产品

2014-04-25 09:02:17

LuaLua优化Lua代码

2012-09-11 11:08:23

Github系统

2011-10-21 14:20:59

高性能计算HPC虚拟化

2011-10-25 13:13:35

HPC高性能计算Platform

2013-09-10 17:13:57

移动网站性能优化移动web

2024-03-20 08:00:00

软件开发Java编程语言
点赞
收藏

51CTO技术栈公众号