良心推荐!Python爬虫高手必备的8大技巧!

开发 后端
爬虫在开发过程中也有很多复用的过程,今天就总结一下必备的8大技巧,以后也能省时省力,高效完成任务。

想要快速学习爬虫,最值得学习的语言一定是Python,Python应用场景比较多,比如:Web快速开发、爬虫、自动化运维等等,可以做简单网站、自动发帖脚本、收发邮件脚本、简单验证码识别脚本。

爬虫在开发过程中也有很多复用的过程,今天就总结一下必备的8大技巧,以后也能省时省力,高效完成任务。

1、基本抓取网页

get方法

import urllib2
url = "http://www.baidu.com"
response = urllib2.urlopen(url)
print response.read()

post方法

import urllib
import urllib2
url = "http://abcde.com"
form = {'name':'abc','password':'1234'}
form_data = urllib.urlencode(form)
request = urllib2.Request(url,form_data)
response = urllib2.urlopen(request)
print response.read()

2、使用代理IP

在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP;在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:

import urllib2
proxy = urllib2.ProxyHandler({'http': '127.0.0.1:8087'})
opener = urllib2.build_opener(proxy)
urllib2.install_opener(opener)
response = urllib2.urlopen('http://www.baidu.com')
print response.read()

3、Cookies处理

cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源。微信搜索公众号:架构师指南,回复:架构师 领取资料 。

代码片段:

import urllib2, cookielib
cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())
opener = urllib2.build_opener(cookie_support)
urllib2.install_opener(opener)
content = urllib2.urlopen('http://XXXX').read()

关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。

手动添加cookie:

cookie = "PHPSESSID=91rurfqm2329bopnosfu4fvmu7; kmsign=55d2c12c9b1e3; KMUID=b6Ejc1XSwPq9o756AxnBAg="
request.add_header("Cookie", cookie)

4、伪装成浏览器

某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。所以用urllib2直接访问网站经常会出现HTTP Error 403: Forbidden的情况。

对有些 header 要特别留意,Server 端会针对这些 header 做检查:

  •  User-Agent 有些 Server 或 Proxy 会检查该值,用来判断是否是浏览器发起的 Request
  •  Content-Type 在使用 REST 接口时,Server 会检查该值,用来确定 HTTP Body 中的内容该怎样解析

这时可以通过修改http包中的header来实现,代码片段如下:

import urllib2
headers = {
'User-Agent':'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'
}
request = urllib2.Request(
url = 'http://my.oschina.net/jhao104/blog?catalog=3463517',
headers = headers
)
print urllib2.urlopen(request).read()

5、页面解析

对于页面解析最强大的当然是正则表达式,这个对于不同网站不同的使用者都不一样,就不用过多的说明

其次就是解析库了,常用的有两个lxml和BeautifulSoup

对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxml C语言编码,高效,支持Xpath。

6、验证码的处理

对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。

7、gzip压缩

有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60%以上。这尤其适用于XML web 服务,因为 XML 数据 的压缩率可以很高。

但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。

于是需要这样修改代码:

import urllib2, httplib
request = urllib2.Request('http://xxxx.com')
request.add_header('Accept-encoding', 'gzip')
opener = urllib2.build_opener()
f = opener.open(request)
  •  这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据。

然后就是解压缩数据:

import StringIO
import gzip
compresseddata = f.read()
compressedstream = StringIO.StringIO(compresseddata)
gzipper = gzip.GzipFile(fileobj=compressedstream)
print gzipper.read()

8、多线程并发抓取

单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。

虽然说Python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。

from threading import Thread
from Queue import Queue
from time import sleep
# q是任务队列
#NUM是并发线程总数
#JOBS是有多少任务
q = Queue()
NUM = 2
JOBS = 10
#具体的处理函数,负责处理单个任务
def do_somthing_using(arguments):
print arguments
#这个是工作进程,负责不断从队列取数据并处理
def working():
while True:
arguments = q.get()
do_somthing_using(arguments)
sleep(1)
q.task_done()
#fork NUM个线程等待队列
for i in range(NUM):
t = Thread(target=working)
t.setDaemon(True)
t.start()
#把JOBS排入队列
for i in range(JOBS):
q.put(i)
#等待所有JOBS完成
q.join()
责任编辑:庞桂玉 来源: Python人工智能编程
相关推荐

2009-12-18 16:00:48

2011-07-15 08:36:09

技巧代码片段jQuery Mobi

2020-10-26 08:31:41

Python爬虫开发

2023-10-11 16:12:07

2010-01-04 16:22:01

CISCO交换机使用技

2021-01-11 16:20:18

安全测试工具安全测试恶意软件

2020-12-25 10:55:13

Windows软件办公

2016-10-20 20:21:09

Python爬虫技巧

2016-10-21 14:35:52

Pythonwebget方法

2023-12-06 12:52:00

Python

2024-09-23 08:10:00

开发Python网络爬虫

2020-10-19 19:25:32

Python爬虫代码

2011-03-11 16:32:33

2010-09-01 09:08:34

CSS

2010-09-03 15:48:47

CSS

2022-10-09 10:11:30

Python爬虫神器

2024-09-24 10:16:13

PythonWord文档

2014-05-12 11:07:43

虚拟机性能虚拟机

2020-08-26 12:07:02

PythonGUI库开发

2019-11-20 12:03:42

Python数据爬虫
点赞
收藏

51CTO技术栈公众号