万字长文带你详解死锁!

开发 前端
本文介绍了死锁的概念,以及产生死锁的 4 个条件,排查死锁可以通过本文提供的 4 种工具中的任意一种来检测,从易用性和性能方面来考虑,推荐使用 jconsole 或 jvisualvm,最后我们介绍了死锁问题的两种解决方案:顺序锁和轮询锁。

作者 | 王磊

来源 | Java中文社群(ID:javacn666)

转载请联系授权(微信ID:GG_Stone)

死锁(Dead Lock)指的是两个或两个以上的运算单元(进程、线程或协程),都在等待对方停止执行,以取得系统资源,但是没有一方提前退出,就称为死锁。

图片

一、死锁演示

死锁的形成分为两个方面,一个是使用内置锁 synchronized 形成的死锁,另一种是使用显式锁 Lock 实现的死锁,接下来我们分别来看。

1、死锁 synchronized 版

publicclass DeadLockExample {
public static void main(String[] args) {
Object lockA = new Object(); // 创建锁 A
Object lockB = new Object(); // 创建锁 B
// 创建线程 1
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 先获取锁 A
synchronized (lockA) {
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 尝试获取锁 B
System.out.println("线程 1:等待获取 B...");
synchronized (lockB) {
System.out.println("线程 1:获取到锁 B!");
}
}
}
});
t1.start(); // 运行线程
// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
// 先获取锁 B
synchronized (lockB) {
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 尝试获取锁 A
System.out.println("线程 2:等待获取 A...");
synchronized (lockA) {
System.out.println("线程 2:获取到锁 A!");
}
}
}
});
t2.start(); // 运行线程
}
}

以上程序的执行结果如下:

图片

从上述结果可以看出,线程 1 和线程 2 都在等待对方释放锁,这样就造成了死锁问题。

2、死锁 Lock 版

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
publicclass DeadLockByReentrantLockExample {
public static void main(String[] args) {
Lock lockA = new ReentrantLock(); // 创建锁 A
Lock lockB = new ReentrantLock(); // 创建锁 B

// 创建线程 1
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
lockA.lock(); // 加锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
System.out.println("线程 1:等待获取 B...");
lockB.lock(); // 加锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockA.unlock(); // 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock(); // 释放锁
}
}
});
t1.start(); // 运行线程

// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
lockB.lock(); // 加锁
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
System.out.println("线程 2:等待获取 A...");
lockA.lock(); // 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock(); // 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockB.unlock(); // 释放锁
}
}
});
t2.start(); // 运行线程
}
}

以上程序的执行结果如下:

图片

二、死锁产生原因

通过以上示例,我们可以得出结论,要产生死锁需要满足以下 4 个条件:

  1. 互斥条件:指运算单元(进程、线程或协程)对所分配到的资源具有排它性,也就是说在一段时间内某个锁资源只能被一个运算单元所占用。
  2. 请求和保持条件:指运算单元已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它运算单元占有,此时请求运算单元阻塞,但又对自己已获得的其它资源保持不放。
  3. 不可剥夺条件:指运算单元已获得的资源,在未使用完之前,不能被剥夺。
  4. 环路等待条件:指在发生死锁时,必然存在运算单元和资源的环形链,即运算单元正在等待另一个运算单元占用的资源,而对方又在等待自己占用的资源,从而造成环路等待的情况。

只有以上 4 个条件同时满足,才会造成死锁问题。

三、死锁排查工具

如果程序出现死锁问题,可通过以下 4 种方案中的任意一种进行分析和排查。

1、jstack

我们在使用 jstack 之前,先要通过 jps 得到运行程序的进程 ID,使用方法如下:

图片

“jps -l”可以查询本机所有的 Java 程序,jps(Java Virtual Machine Process Status Tool)是 Java 提供的一个显示当前所有 Java 进程 pid 的命令,适合在 linux/unix/windows 平台上简单查看当前 Java 进程的一些简单情况,“-l”用于输出进程 pid 和运行程序完整路径名(包名和类名)。

有了进程 ID(PID)之后,我们就可以使用“jstack -l PID”来发现死锁问题了,如下图所示:

图片

jstack 用于生成 Java 虚拟机当前时刻的线程快照,“-l”表示长列表(long),打印关于锁的附加信息。

PS:可以使用 jstack -help 查看更多命令使用说明。

2、jconsole

使用 jconsole 需要打开 JDK 的 bin 目录,找到 jconsole 并双击打开,如下图所示:

图片

然后选择要调试的程序,如下图所示:

图片

之后点击连接进入,选择“不安全的连接”进入监控主页,如下图所示:

图片图片

之后切换到“线程”模块,点击“检测死锁”按钮,如下图所示:

图片

之后稍等片刻就会检测出死锁的相关信息,如下图所示:

图片

3、jvisualvm

jvisualvm 也在 JDK 的 bin 目录中,同样是双击打开:

图片

稍等几秒之后,jvisualvm 中就会出现本地的所有 Java 程序,如下图所示:

图片

双击选择要调试的程序:

图片

单击鼠标进入“线程”模块,如下图所示:

图片

从上图可以看出,当我们切换到线程一栏之后就会直接显示出死锁信息,之后点击“线程 Dump”生成死锁的详情信息,如下图所示:

图片

4、jmc

jmc 是 Oracle Java Mission Control 的缩写,是一个对 Java 程序进行管理、监控、概要分析和故障排查的工具套件。它也是在 JDK 的 bin 目录中,同样是双击启动,如下图所示:

图片

jmc 主页信息如下:

图片

之后选中要排查的程序,右键“启动 JMX 控制台”查看此程序的详细内容,如下图所示:

图片图片

然后点击“线程”,勾中“死锁检测”就可以发现死锁和死锁的详情信息,如下图所示:

图片

四、死锁解决方案

1、死锁解决方案分析

接下来我们来分析一下,产生死锁的 4 个条件,哪些是可以破坏的?哪些是不能被破坏的?

  • 互斥条件:系统特性,不能被破坏。
  • 请求和保持条件:可以被破坏。
  • 不可剥夺条件:系统特性,不能被破坏。
  • 环路等待条件:可以被破坏。

通过上述分析,我们可以得出结论,我们只能通过破坏请求和保持条件或者是环路等待条件,从而来解决死锁的问题,那上线,我们就先从破坏“环路等待条件”开始来解决死锁问题。

2、解决方案1:顺序锁

所谓的顺序锁指的是通过有顺序的获取锁,从而避免产生环路等待条件,从而解决死锁问题的。

当我们没有使用顺序锁时,程序的执行可能是这样的:

图片

线程 1 先获取了锁 A,再获取锁 B,线程 2 与 线程 1 同时执行,线程 2 先获取锁 B,再获取锁 A,这样双方都先占用了各自的资源(锁 A 和锁 B)之后,再尝试获取对方的锁,从而造成了环路等待问题,最后造成了死锁的问题。

此时我们只需要将线程 1 和线程 2 获取锁的顺序进行统一,也就是线程 1 和线程 2 同时执行之后,都先获取锁 A,再获取锁 B,执行流程如下图所示:

图片

因为只有一个线程能成功获取到锁 A,没有获取到锁 A 的线程就会等待先获取锁 A,此时得到锁 A 的线程继续获取锁 B,因为没有线程争抢和拥有锁 B,那么得到锁 A 的线程就会顺利的拥有锁 B,之后执行相应的代码再将锁资源全部释放,然后另一个等待获取锁 A 的线程就可以成功获取到锁资源,执行后续的代码,这样就不会出现死锁的问题了。

顺序锁的实现代码如下所示:

publicclass SolveDeadLockExample {
public static void main(String[] args) {
Object lockA = new Object(); // 创建锁 A
Object lockB = new Object(); // 创建锁 B
// 创建线程 1
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
synchronized (lockA) {
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("线程 1:等待获取 B...");
synchronized (lockB) {
System.out.println("线程 1:获取到锁 B!");
}
}
}
});
t1.start(); // 运行线程
// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
synchronized (lockA) {
System.out.println("线程 2:获取到锁 A!");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("线程 2:等待获取B...");
synchronized (lockB) {
System.out.println("线程 2:获取到锁 B!");
}
}
}
});
t2.start(); // 运行线程
}
}

以上程序的执行结果如下:

图片

从上述执行结果可以看出,程序并没有出现死锁的问题。

3、解决方案2:轮询锁

轮询锁是通过打破“请求和保持条件”来避免造成死锁的,它的实现思路简单来说就是通过轮询来尝试获取锁,如果有一个锁获取失败,则释放当前线程拥有的所有锁,等待下一轮再尝试获取锁。

轮询锁的实现需要使用到 ReentrantLock 的 tryLock 方法,具体实现代码如下:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
publicclass SolveDeadLockExample {
public static void main(String[] args) {
Lock lockA = new ReentrantLock(); // 创建锁 A
Lock lockB = new ReentrantLock(); // 创建锁 B
// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB);
}
});
t1.start(); // 运行线程

// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
lockB.lock(); // 加锁
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
System.out.println("线程 2:等待获取 A...");
lockA.lock(); // 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock(); // 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockB.unlock(); // 释放锁
}
}
});
t2.start(); // 运行线程
}
/**
* 轮询锁
*/
public static void pollingLock(Lock lockA, Lock lockB) {
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock(); // 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock(); // 释放锁
System.out.println("线程 1:释放锁 A.");
}
}
// 等待一秒再继续执行
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

以上程序的执行结果如下:

图片

从上述结果可以看出,以上代码也没有出现死锁的问题。

4、轮询锁优化

使用轮询锁虽然可以解决死锁的问题,但并不是完美无缺的,比如以下这些问题。

(1)问题1:死循环

以上简易版的轮询锁,如果遇到有一个线程一直霸占或者长时间霸占锁资源的情况,就会导致这个轮询锁进入死循环的状态,它会尝试一直获取锁资源,这样就会造成新的问题,带来不必要的性能开销,具体示例如下。

反例

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
publicclass SolveDeadLockExample {
public static void main(String[] args) {
Lock lockA = new ReentrantLock(); // 创建锁 A
Lock lockB = new ReentrantLock(); // 创建锁 B
// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB);
}
});
t1.start(); // 运行线程

// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
lockB.lock(); // 加锁
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
System.out.println("线程 2:等待获取 A...");
lockA.lock(); // 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock(); // 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 如果此处代码未执行,线程 2 一直未释放锁资源
// lockB.unlock();
}
}
});
t2.start(); // 运行线程
}
/**
* 轮询锁
*/
public static void pollingLock(Lock lockA, Lock lockB) {
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock(); // 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock(); // 释放锁
System.out.println("线程 1:释放锁 A.");
}
}
// 等待一秒再继续执行
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

以上代码的执行结果如下:

图片

从上述结果可以看出,线程 1 轮询锁进入了死循环的状态。

优化版

针对以上死循环的情况,我们可以改进的思路有以下两种:

  1. 添加最大次数限制:如果经过了 n 次尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询(失败策略可以是记录日志或其他操作)。
  2. 添加最大时长限制:如果经过了 n 秒尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询。

以上策略任选其一就可以解决死循环的问题,出于实现成本的考虑,我们可以采用轮询最大次数的方式来改进轮询锁,具体实现代码如下:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
publicclass SolveDeadLockExample {
public static void main(String[] args) {
Lock lockA = new ReentrantLock(); // 创建锁 A
Lock lockB = new ReentrantLock(); // 创建锁 B
// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB, 3);
}
});
t1.start(); // 运行线程
// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
lockB.lock(); // 加锁
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
System.out.println("线程 2:等待获取 A...");
lockA.lock(); // 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock(); // 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 线程 2 忘记释放锁资源
// lockB.unlock(); // 释放锁
}
}
});
t2.start(); // 运行线程
}
/**
* 轮询锁
*
* maxCount:最大轮询次数
*/
public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
// 轮询次数计数器
int count = 0;
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock(); // 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock(); // 释放锁
System.out.println("线程 1:释放锁 A.");
}
}
// 判断是否已经超过最大次数限制
if (count++ > maxCount) {
// 终止循环
System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
return;
}
// 等待一秒再继续尝试获取锁
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

以上代码的执行结果如下:

图片

从以上结果可以看出,当我们改进之后,轮询锁就不会出现死循环的问题了,它会尝试一定次数之后终止执行。

(2)问题2:线程饿死

我们以上的轮询锁的轮询等待时间是固定时间,如下代码所示:

// 等待 1s 再尝试获取(轮询)锁
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}

这样在特殊情况下会造成线程饿死的问题,也就是轮询锁一直获取不到锁的问题,比如以下示例。

反例

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
publicclass SolveDeadLockExample {
public static void main(String[] args) {
Lock lockA = new ReentrantLock(); // 创建锁 A
Lock lockB = new ReentrantLock(); // 创建锁 B
// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB, 3);
}
});
t1.start(); // 运行线程
// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
while (true) {
lockB.lock(); // 加锁
System.out.println("线程 2:获取到锁 B!");
try {
System.out.println("线程 2:等待获取 A...");
lockA.lock(); // 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock(); // 释放锁
}
} finally {
lockB.unlock(); // 释放锁
}
// 等待一秒之后继续执行
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
});
t2.start(); // 运行线程
}
/**
* 轮询锁
*/
public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
// 循环次数计数器
int count = 0;
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(100); // 等待 0.1s(获取锁需要的时间)
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock(); // 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock(); // 释放锁
System.out.println("线程 1:释放锁 A.");
}
}
// 判断是否已经超过最大次数限制
if (count++ > maxCount) {
// 终止循环
System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
return;
}
// 等待一秒再继续尝试获取锁
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

以上代码的执行结果如下:

图片

从上述结果可以看出,线程 1(轮询锁)一直未成功获取到锁,造成这种结果的原因是:线程 1 每次轮询的等待时间为固定的 1s,而线程 2 也是相同的频率,每 1s 获取一次锁,这样就会导致线程 2 会一直先成功获取到锁,而线程 1 则会一直处于“饿死”的情况,执行流程如下图所示:

图片

优化版

接下来,我们可以将轮询锁的固定等待时间,改进为固定时间 + 随机时间的方式,这样就可以避免因为获取锁的频率一致,而造成轮询锁“饿死”的问题了,具体实现代码如下:

import java.util.Random;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
publicclass SolveDeadLockExample {
privatestatic Random rdm = new Random();
public static void main(String[] args) {
Lock lockA = new ReentrantLock(); // 创建锁 A
Lock lockB = new ReentrantLock(); // 创建锁 B
// 创建线程 1(使用轮询锁)
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
// 调用轮询锁
pollingLock(lockA, lockB, 3);
}
});
t1.start(); // 运行线程

// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
while (true) {
lockB.lock(); // 加锁
System.out.println("线程 2:获取到锁 B!");
try {
System.out.println("线程 2:等待获取 A...");
lockA.lock(); // 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock(); // 释放锁
}
} finally {
lockB.unlock(); // 释放锁
}
// 等待一秒之后继续执行
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
});
t2.start(); // 运行线程
}
/**
* 轮询锁
*/
public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
// 循环次数计数器
int count = 0;
while (true) {
if (lockA.tryLock()) { // 尝试获取锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(100); // 等待 0.1s(获取锁需要的时间)
System.out.println("线程 1:等待获取 B...");
if (lockB.tryLock()) { // 尝试获取锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockB.unlock(); // 释放锁
System.out.println("线程 1:释放锁 B.");
break;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock(); // 释放锁
System.out.println("线程 1:释放锁 A.");
}
}
// 判断是否已经超过最大次数限制
if (count++ > maxCount) {
// 终止循环
System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
return;
}
// 等待一定时间(固定时间 + 随机时间)之后再继续尝试获取锁
try {
Thread.sleep(300 + rdm.nextInt(8) * 100); // 固定时间 + 随机时间
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

以上代码的执行结果如下:

图片

从上述结果可以看出,线程 1(轮询锁)加入随机等待时间之后就不会出现线程饿死的问题了。

五、总结

本文介绍了死锁的概念,以及产生死锁的 4 个条件,排查死锁可以通过本文提供的 4 种工具中的任意一种来检测,从易用性和性能方面来考虑,推荐使用 jconsole 或 jvisualvm,最后我们介绍了死锁问题的两种解决方案:顺序锁和轮询锁。

责任编辑:姜华 来源: Java中文社群
相关推荐

2022-09-14 09:01:55

shell可视化

2020-07-09 07:54:35

ThreadPoolE线程池

2022-07-19 16:03:14

KubernetesLinux

2021-10-18 11:58:56

负载均衡虚拟机

2021-01-19 05:49:44

DNS协议

2021-02-26 05:17:38

计算机网络二进制

2023-02-16 18:22:44

ChatGPTWolfram语言

2023-12-04 08:10:34

Spring循环依赖

2020-11-16 10:47:14

FreeRTOS应用嵌入式

2020-07-15 08:57:40

HTTPSTCP协议

2022-10-10 08:35:17

kafka工作机制消息发送

2024-03-07 18:11:39

Golang采集链接

2024-05-10 12:59:58

PyTorch人工智能

2023-06-12 08:49:12

RocketMQ消费逻辑

2021-08-26 05:02:50

分布式设计

2024-01-11 09:53:31

面试C++

2022-07-15 16:31:49

Postman测试

2022-09-08 10:14:29

人脸识别算法

2024-01-05 08:30:26

自动驾驶算法

2022-04-25 10:56:33

前端优化性能
点赞
收藏

51CTO技术栈公众号