Stream流原理与用法总结,你学会了吗?

开发 前端
整个Stream处理过程上看可以分为三段:创建流、中间操作、最终操作,即多个元素值通过流计算最终获取到求和的结果。

一、接口设计

从Java1.8开始提出了Stream流的概念,侧重对于源数据计算能力的封装,并且支持序列与并行两种操作方式;依旧先看核心接口的设计:

图片

BaseStream:基础接口,声明了流管理的核心方法;

Stream:核心接口,声明了流操作的核心方法,其他接口为指定类型的适配;

基础案例:通过指定元素的值,返回一个序列流,元素的内容是字符串,并转换为Long类型,最终计算求和结果并返回;

System.out.println("sum1="+IntStream.of(1,2,3).sum());
System.out.println("sum2="+Stream.of("1", "2", "3").mapToLong(Long::parseLong).sum());

整个Stream处理过程上看可以分为三段:创建流、中间操作、最终操作,即多个元素值通过流计算最终获取到求和的结果;

二、创建操作

除了Stream提供的创建方法之外,在Java1.8中,很多容器类的方法都进行的扩展,提供了集合元素转流的能力;

Stream创建:

Stream<Integer> intStream = Stream.of(1, 2) ;

Collection创建:

List<String> getList = Arrays.asList("hello","copy") ;
Stream<String> strStream = getList.stream() ;

Array创建:

Double[] getArray = new Double[]{1.1,2.2};
Stream<Double> douStream = Arrays.stream(getArray) ;

上述方式创建的Stream流默认都是串行序列,可以通过Stream.isParallel进行判断;执行Stream.parallel方法可以转为并行流;

三、中间操作

通常对于Stream的中间操作,可以视为是源的查询,并且是懒惰式的设计,对于源数据进行的计算只有在需要时才会被执行,与数据库中视图的原理相似;

Stream流的强大之处便是在于提供了丰富的中间操作,相比集合或数组这类容器,极大的简化源数据的计算复杂度,案例中使用的数据结构如下;

public class TesStream {
public static void main(String[] args) {
List<User> userList = getUserList () ;
}
private static List<User> getUserList (){
List<User> userList = new ArrayList<>() ;
userList.add(new User(1,"张三","上海")) ;
userList.add(new User(2,"李四","北京")) ;
userList.add(new User(3,"王五","北京")) ;
userList.add(new User(4,"顺六","上海,杭州")) ;
return userList ;
}
}

filter:过滤,输出id大于1的用户;

userList.stream().filter(user -> user.getId()>1).forEach(System.out::println);

map:将现有的元素转换映射到对应的结果,输出用户所在城市;

userList.stream().map(user -> user.getName()+" 在 "+user.getCity()).forEach(System.out::println);

peek:对元素进行遍历处理,每个用户ID加1输出;

userList.stream().peek(user -> user.setId(user.getId()+1)).forEach(System.out::println);

flatMap:数据拆分一对多映射,用户所在多个城市;

userList.stream().flatMap(user -> Arrays.stream(user.getCity().split(","))).forEach(System.out::println);

sorted:指定属性排序,根据用户ID倒序输出;

userList.stream().sorted(Comparator.comparingInt(User::getId).reversed()).forEach(System.out::println);

distinct:去重,用户所在城市去重后输出;

userList.stream().map(User::getCity).distinct().forEach(System.out::println);

skip & limit:截取,过滤后的数据跳过,截取第一条;

userList.stream().filter(user -> user.getId()>1).skip(1).limit(1).forEach(System.out::println);

相比于集合与数组在Java1.8之前的处理逻辑,通过Stream流的方法简化对数据改、查、过滤、排序等一系列操作,上面对于最终方法只涉及了foreach遍历;

四、最终操作

Stream流执行完最终操作之后,无法再执行其他动作,否则会报状态异常,提示该流已经被执行操作或者被关闭,想要再次执行操作必须重新创建Stream流;

min:最小值,获取用户最小的id值;

int min = userList.stream().min(Comparator.comparingInt(User::getId)).get().getId();

max:最大值,获取用户最大的id值;

int max = userList.stream().max(Comparator.comparingInt(User::getId)).get().getId();

sum:求和,对用户ID进行累计求和;

int sum = userList.stream().mapToInt(User::getId).sum() ;

count:总数,id小于2的用户总数;

long count = userList.stream().filter(user -> user.getId()<2).count();

foreach:遍历,输出北京相关的用户;

userList.stream().filter(user -> "北京".equals(user.getCity())).forEach(System.out::println);

findAny:查找符合条件的任意一个元素,获取一个北京用户;

User getUser = userList.stream().filter(user -> "北京".equals(user.getCity())).findAny().get();

findFirst:获取符合条件的第一个元素;

User getUser = userList.stream().filter(user -> "北京".equals(user.getCity())).findFirst().get();

anyMatch:匹配判断,判断是否存在深圳的用户;

boolean matchFlag = userList.stream().anyMatch(user -> "深圳".equals(user.getCity()));

allMatch:全部匹配,判断所有用户的城市不为空;

boolean matchFlag = userList.stream().allMatch(user -> StrUtil.isNotEmpty(user.getCity()));

noneMatch:全不匹配,判断没有用户的城市为空;

boolean matchFlag = userList.stream().noneMatch(user -> StrUtil.isEmpty(user.getCity()));

这里只是演示一些简单的最终方法,主要涉及Stream流的一些统计和判断相关的能力,在一些实际的业务应用中,显然这些功能还远远不够;

五、Collect收集

Collector:结果收集策略的核心接口,具备将指定元素累加存放到结果容器中的能力;并在Collectors工具中提供了Collector接口的实现类;

toList:将用户ID存放到List集合中;

List<Integer> idList = userList.stream().map(User::getId).collect(Collectors.toList()) ;

toMap:将用户ID和Name以Key-Value形式存放到Map集合中;

Map<Integer,String> userMap = userList.stream().collect(Collectors.toMap(User::getId,User::getName));

toSet:将用户所在城市存放到Set集合中;

Set<String> citySet = userList.stream().map(User::getCity).collect(Collectors.toSet());

counting:符合条件的用户总数;

long count = userList.stream().filter(user -> user.getId()>1).collect(Collectors.counting());

summingInt:对结果元素即用户ID求和;

Integer sumInt = userList.stream().filter(user -> user.getId()>2).collect(Collectors.summingInt(User::getId)) ;

minBy:筛选元素中ID最小的用户

User maxId = userList.stream().collect(Collectors.minBy(Comparator.comparingInt(User::getId))).get() ;

joining:将用户所在城市,以指定分隔符链接成字符串;

String joinCity = userList.stream().map(User::getCity).collect(Collectors.joining("||"));

groupingBy:按条件分组,以城市对用户进行分组;

Map<String,List<User>> groupCity = userList.stream().collect(Collectors.groupingBy(User::getCity));

在代码工程中会涉及到诸多的集合数据计算的逻辑,尤其在微服务场景中,VO数据模型需要对多个服务的数据进行组装,通过Collector可以极大精简组装过程;

责任编辑:武晓燕 来源: 知了一笑
相关推荐

2022-07-13 08:16:49

RocketMQRPC日志

2023-10-06 14:49:21

SentinelHystrixtimeout

2023-05-05 06:54:07

MySQL数据查询

2022-12-06 08:37:43

2022-10-18 17:59:46

Bootstrap源码父类

2023-03-30 08:26:31

DNSTCPUDP

2023-03-31 08:16:39

CDN网络数据

2023-08-14 08:42:41

2023-09-06 11:31:24

MERGE用法SQL

2023-08-08 08:23:08

Spring日志​线程池

2022-04-13 09:01:45

SASSCSS处理器

2023-01-26 00:28:45

前端测试技术

2023-06-08 07:34:19

HDFS小文件压缩包

2022-07-26 00:25:57

PandasQuery索引器

2023-08-28 07:02:10

2024-03-12 08:37:32

asyncawaitJavaScript

2023-07-03 07:20:50

2023-01-10 08:43:15

定义DDD架构

2024-01-19 08:25:38

死锁Java通信

2024-02-04 00:00:00

Effect数据组件
点赞
收藏

51CTO技术栈公众号