electron 应用开发优秀实践

移动开发 新闻
本文介绍了我们对桌面端技术的调研、确定技术选型,以及用 electron 开发过程中,总结的实践经验。

一、背景

在团队中,我们因业务发展,需要用到桌面端技术,如离线可用、调用桌面系统能力。什么是桌面端开发?一句话概括就是: 以 Windows 、macOS 和 Linux 为操作系统的软件开发 。对此我们做了详细的技术调研,桌面端的开发方式主要有 Native 、 QT 、 Flutter 、 NW 、 Electron 、 Tarui 。其各自优劣势如下表格所示:

我们最终的桌面端技术选型是 Electron ,Electron 是一个可以使用 Web 技术来开发跨平台桌面应用的开发框架。

其技术组成如下:

Electron = Chromium + Node.js + Native API

各技术能力如下图所示:

整体架构如下图所示:

Electron 是多进程架构,架构具有以下特点:

  • 由一个主进程和 N 个渲染进程组成
  • 主进程承担主导作用,用于完成各种跨平台和原生交互
  • 渲染进程可以是多个,使用 Web 技术开发,通过浏览器内核渲染页面
  • 主进程和渲染进程通过进程间通信来完成各种功能

这里说下 Electron 进程间通信技术原理:

electron 使用 IPC (interprocess communication) 在进程之间进行通信,如下图所示:

其提供了 IPC 通信模块,主进程的 ipcMain 和渲染进程的 ipcRenderer。

从 electron 源码中可以看出, ipcMain 和 ipcRenderer 都是 EventEmitter 对象,源码如下图所示:

看到源码实现,是不是觉得 IPC 不难理解了。知其本质,方可游刃有余。

看到这,我们回顾上文技术表格,看到 Electron 应用包体积大,那体积大的根本原因是什么呢?

其实这和 chromium 的框架设计有关,其对很多功能都没有宏控制,导致很难把庞大复杂的细节功能去除掉,也造成了基于 chromium 的开发框架,如 electron 、 nwjs 打出的包起步就是 100 多 M 。

综上,electron 具有跨端、基于 Web 、超强生态等优点,是桌面端开发的优秀方案之一。下文将介绍 electron 应用开发实践经验,包括应用技术选型和常用功能。

二、应用技术选型

2.1 编程语言 Typescript

理由如下:

  • 针对开发者
  1. Javascript 的超集 - 无缝支持所有的 es2020+ 所有的特性,学习成本小
  2. 编译生成的 JavaScript 的代码保持很好的可读性
  3. 可维护性明显增强
  4. 完整的 OOP 的支持 - extends, interface, private, protect, public等
  5. 类型即文档
  6. 类型的约束,更少的单元测试的覆盖
  7. 更安全的代码
  • 针对工具
  1. 更好的重构能力
  2. 静态分析自动导包
  3. 代码错误检查
  4. 代码跳转
  5. 代码提示补齐
  • 社区

大量的社区的类型定义文件 提升开发效率

2.2 构建工具 Electron-Forge

理由:简单而又强大,目前 electron 应用最好的构建工具之一。

这里提一下 electron-builder 其和 electron-forge 的介绍和区别,看下图所示:

两者最大的区别在于自由度,两者在能力上基本没什么差异了,从官方组织中的排序看,有意优先推荐 electron-forge 。

2.3 Web 方案 Vue3 + Vite

我们采用的是 Vue3 ,同时使用 Vite 作为构建工具,具体优点,大家可以查看官网介绍,这套组合是目前主流的 Web 开发方案。

2.4 monorepo方案 pnpm + turbo

目前的 monorepo 生态百花齐放,正确的实践方法应该是集大成法,也就是取各家之长,目前的趋势也是如此,各开源 monorepo 工具达成默契,专注自己擅长的能力。

如 pnpm 擅长依赖管理, turbo 擅长构建任务编排。遂在 monorepo 技术选型上,我选择了 pnpm 和 turbo 。

pnpm 理由如下:

  • 目前最好的包管理工具, pnpm 吸收了 npm 、 yarn 、 lerna 等主流工具的精华,并去其糟粕。
  • 生态、社区活跃且强大
  • 结合 workspace 可以完成 monorepo 最佳设计和实践
  • 在管理多项目的包依赖、代码风格、代码质量、组件库复用等场景下,表现出色
  • 在框架、库的开发、调试、维护方面,表现出色

相比于 vue 官网,在使用 pnpm 上,我加了 workspace 。

turbo 理由如下:

  • 它是一个高性能构建系统,拥有增量构建、云缓存、并行执行、运行时零开销、任务管道、精简子集等特性
  • 具有非常优秀的任务编排能力,可以弥补 pnpm 在任务编排上的短板

2.5 数据库 lowdb

electron 应用数据库有非常多的选择如 lowdb 、 sqlite3 、 electron-store 、 pouchdb 、 dedb 、 rxdb 、 dexie 、 ImmortalDB 等。这些数据库都有一个特性,那就是无服务器。

electron 应用数据库技术选型考虑因素主要有以下3点:

  • 生态(使用者数量、维护频率、版本稳定度)
  • 能力
  • 性能
  • 其他(和使用者技术匹配度)

我们通过以下渠道进行了相关调研

  • github 的 issues、commit、fork、star
  • sourcegraph 关键字搜索结果数
  • npm 包下载量、版本发布
  • 官网和博客

给出四个最优选择,分别是 lowdb 、 sqlite3 、 nedb 、 electron-store , 理由如下:

  • lowdb:生态、能力、性能三方面表现优秀, json 形式的存储结构, 支持 lodash 、 ramda 等 api 操作,利于备份和调用
  • sqlite3:生态、能力、性能三方面表现优秀, Nodejs 关系型数据库第一选择方案
  • nedb:能力、性能三方面表现优秀,缺点是基本不维护了,但底子还在,尤其操作是 MongoDB 的子集,对于熟悉 MongoDB 的使用者来说是绝佳选择。
  • electron-store:生态表现优秀,轻量级持久化方案,简单易用

我们使用的数据库选型是 lowdb 方案。

PS:提一下 pouchdb ,如果需要将本地数据同步到远端数据库,可以使用 pouchdb ,其和 couchdb 可以轻松完成同步。

2.6 脚本工具 zx

软件开发过程中,将一些流程和操作通过脚本来完成,可以有效地提高开发效率和幸福度。

依赖 node runtime 的优秀选择就两个:shelljs 和 zx , 选择 zx 的理由如下:

  1. 自带 fetch 、 chalk 等常用库,使用方便快捷
  2. 多个子进程方便快捷、执行远端脚本、解析 md 、 xml 文件脚本、支持 ts ,功能丰富且强大
  3. 谷歌出品,大厂背景,生态非常活跃

至此,技术选型就介绍完了,下面我将介绍electron 应用的常用功能。

三、构建

此部分主要介绍以下5点内容:

  • 应用图标生成
  • 二进制文件构建
  • 按需构建
  • 性能优化
  • 跨平台兼容

3.1 应用图标生成

不同尺寸图标的生成有以下方法:

Windows

  • 软件生成:icofx3

网页生成: 

https://tool.520101.com/diannao/ico/(opens new window)

MacOS

  • 软件生成:icofx3

网页生成: 

https://tool.520101.com/diannao/ico/(opens new window)

  • 命令行生成:使用 sips 和 iconutil 生成

3.2 二进制文件构建

本章节内容是基于 electron-forge 阐述的,不过原理是一样的。

在开发桌面端应用时,会有场景要用到第三方的二进制程序,比如 ffmpeg 这种。在构建二进制程序时,要关注以下两个注意项:

(1)二进制程序不能打包进 asar 中 可以在构建配置文件(forge.config.js)进行如下设置:

const os = require('os')
const platform = os.platform()
const config = {
packagerConfig: {

// 可以将 ffmpeg 目录打包到 asar 目录外面

extraResource: [`./src/main/ffmpeg/`]

}

}

(2)开发和生产环境,获取二进制程序路径方法是不一样的 可以采用如下代码进行动态获取:

import { app } from 'electron'
import os from 'os'
import path from 'path'
const platform = os.platform()

const dir = app.getAppPath()

let basePath = ''

if(app.isPackaged) basePath = path.join(process.resourcesPath)

else basePath = path.join(dir, 'ffmpeg')

const isWin = platform === 'win32'

// ffmpeg 二进制程序路径

const ffmpegPath = path.join(basePath, `${platform}`, `ffmpeg${isWin ? '.exe' : ''}`)

3.3 按需构建

如何对跨平台二进制文件进行按需构建呢?

比如桌面应用中用到了 ffmpeg , 它需要有 windows 、 mac 和 linux 的下载二进制。在打包的时候,如果不做按需构建,则会将 3 个二进制文件全部打到构建中,这样会让应用体积增加很多。

可以在 forge.config.js 配置文件中进行如下配置,即可完成按需构建,代码如下:

const platform = os.platform()
const config = {
packagerConfig: {
extraResource: [`./src/main/ffmpeg/${platform}`]

},

}

通过 platform 变量来把对应系统的二进制打到构建中,即可完成对二进制文件的按需构建。

3.4 性能优化

主要是构建速度和构建体积优化,构建速度这块不好优化。本文重点说下构建体积优化,这里拿 mac 系统举例说明, 在 electron 应用打包后,查看应用包内容,如下图所示:

可以看到有一个 app.asar 文件,这个文件用 asar 解压后可以看到有以下内容:

可以看出 asar 中的文件,就是我们构建后的项目代码,从图中可以看到有 node_modules 目录, 这是因为在 electron 构建机制中,会自动把 dependencies 的依赖全部打到 asar 中。

所以结合上述分析,我们的优化措施有以下4点:

  1. 将 web 端构建所需的依赖全部放到 devDependencies 中,只将在 electron 端需要的依赖放到 dependencies
  2. 将和生产无关的代码和文件从构建中剔除
  3. 对跨平台使用的二进制文件,如 ffmpeg 进行按需构建(上文按需构建已介绍)
  4. 对 node_modules 进行清理精简

这里提下第 4 点,如何对 node_modules 进行清理精简呢?

如果是 yarn 安装的依赖,我们可以在根目录使用下面命令进行精简:

yarn autoclean -I
yarn autoclean -F

如果是 pnpm 安装的依赖,第 4 点应该不起作用了。我在项目中使用 yarn 安装依赖,然后执行上述命令后,发现打包体积减少了 6M , 虽然不多,但也还可以。​

至此,构建功能就介绍完了。

四、更新

本章节主要分为以下两个方面:

  • 全量更新
  • 增量更新

下面将依次介绍上述两种更新

4.1 全量更新

通过下载最新的包或者 zip 文件,进行软件更新,需要替换所有的文件。

整体设计流程图如下:

按照流程图去实现,我们需要做以下事情:

  1. 开发服务端接口,用来返回应用最新版本信息
  2. 渲染进程使用 axios 等工具请求接口,获取最新版本信息
  3. 封装更新逻辑,用来对接口返回的版本信息进行综合比较,判断是否更新
  4. 通过 ipc 通信将更新信息传递给主进程
  5. 主进程通过 electron-updater 进行全量更新
  6. 将更新信息通过 ipc 推送给渲染进程
  7. 渲染进程向用户展示更新信息,若更新成功,则弹出弹窗告诉用户重启应用,完成软件更新

4.2 增量更新

通过拉取最新的渲染层打包文件,覆盖之前的渲染层代码,完成软件更新,此方案只需替换渲染层代码,无需替换所有文件。

按照流程图去实现,我们需要做以下事情

  1. 渲染进程定时通知主进程检测更新
  2. 主进程检测更新
  3. 需要更新,则拉取线上最新包
  4. 删除旧版本包,复制线上最新包,完成增量更新
  5. 通知渲染进程,提示用户重启应用完成更新

全量更新和增量更新各有优势,多数情况下,采用增量更新来提高用户更新体验,同时使用全量更新作为兜底更新方案。

至此,更新功能就介绍完了。

五、性能优化

分为以下3个方面:

  1. 构建优化
  2. 启动时优化
  3. 运行时优化

构建优化在上文内容中,已经详细介绍过了,这里不再介绍,下面将介绍 启动时优化 和 运行时优化。

5.1 启动时优化

  • 使用 v8-compile-cache 缓存编译代码
  • 优先加载核心功能,非核心功能动态加载
  • 使用多进程,多线程技术
  • 采用 asar 打包:会加快启动速度
  • 增加视觉过渡:loading + 骨架屏

5.1.1 使用 v8-compile-cache 缓存编译代码

使用 V8 缓存数据,为什么要这么做呢?

因为 electorn 使用 V8 引擎运行 js , V8 运行 js 时,需要先进行解析和编译,再执行代码。其中,解析和编译过程消耗时间多,经常导致性能瓶颈。而 V8 缓存功能,可以将编译后的字节码缓存起来,省去下一次解析、编译的时间。

主要使用 v8-compile-cache 来缓存编译的代码,做法很简单:在需要缓存的地方加一行

require('v8-compile-cache')

其他使用方法请查看此链接文档

https://www.npmjs.com/package/v8-compile-cache(opens new window)

5.1.2 优先加载核心功能,非核心功能动态加载

伪代码如下:

export function share() {
const kun = require('kun')
kun()
}

5.2 运行时优化

  • 对渲染进程 进行 Web 性能优化
  • 对主进程进行轻量瘦身

5.2.1 对渲染进程 进行 Web 性能优化

用一个思维导图来完整阐述如何进行 Web 性能优化,如下图所示:

上图基本包含了性能优化的核心关键点和内容,大家可以以此作为参考,去做性能优化。

5.2.2 对主进程进行轻量瘦身

核心方案就是将运行时耗时、计算量大的功能交给新开的 node 进程去执行处理。

伪代码如下:

const { fork } = require('child_process')
let { app } = require('electron')

function createProcess(socketName) {
process = fork(`xxxx/server.js`, [
'--subprocess',
app.getVersion(),
socketName

])
}

const initApp = async () => {
// 其他初始化代码...
let socket = await findSocket()
createProcess(socket)
}

app.on('ready', initApp)

通过以上代码,将耗时、计算量大的功能,放在 server.js ,然后再 fork 到新开 node 进程中进行处理。

至此,性能优化就介绍完了。

六、质量保障

质量保障的全流程措施如下图所示:

本章节主要介绍以下3个方面:

  1. 自动化测试
  2. 崩溃监控
  3. 崩溃 治理

下面将会依次介绍上述内容。

6.1 自动化测试

自动化测试是什么?

上图是做自动化测试一个完整步骤,大家可以看图领会。

自动化测试主要分为 单元测试、集成测试、端到端测试,三者关系如下图所示:

一般情况下,作为软件工程师,我们做到一定的单元测试就可以了。而且从我目前经验来说,如果是写业务性质的项目,基本上不会编写测试相关的代码。自动化测试主要是用来编写库、框架、组件等需要作为单独个体提供给他人使用的。

electron 的测试工具推荐 vitest 、 spectron 。具体用法参考官网文档即可,没什么特别的技巧。

6.2 崩溃监控

对于 GUI 软件,尤其桌面端软件来说,崩溃率非常重要,因此需要对崩溃进行监控。

崩溃监控原理如下图所示:

崩溃监控技巧

  • 渲染进程崩溃后,提示用户重新加载
  • 通过 preload 统一初始化崩溃监控
  • 主进程、渲染进程通过 process.crash() 进行模拟崩溃
  • 对崩溃日志进行收集分析

崩溃监控做好后,如果发生崩溃,该如何治理崩溃呢?

6.3 崩溃治理

崩溃治理难点:

  • 定位出错栈困难:Native 错误栈,无操作上下文
  • 调试门槛高:C++ 、 IIdb/GDB
  • 运行环境复杂:机器型号、系统、其他软件

崩溃治理技巧:

  • 及时升级 electron
  • 用户操作日志和系统信息
  • 复现和定位问题比治理重要
  • 把问题交给社区解决,社区响应快
  • 善于用 devtool 分析和治理内存问题

七、安全

俗话说的好,安全大于天,保证 electron 应用的安全也是一项重要的事情,本章节将安全分为以下 5 个方面:

  1. 源码泄漏
  2. asar
  3. 源码保护
  4. 应用安全
  5. 编码安全

下面将会依次介绍上述内容。

7.1 源码泄漏

目前 electron 在源码安全做的不好,官方只用 asar 做了一下很没用的源码保护,到底有多没用呢?

你只需要下载 asar 工具,然后对 asar 文件进行解压就可以得到里面的源码了,如下图所示:

通过图中操作即可看到语雀应用的源码。上面提到的 asar 是什么呢?

7.2 asar

asar 是一种将多个文件合并成一个文件的类 tar 风格的归档格式。Electron 可以无需解压整个文件,即可从其中读取任意文件内容。

asar 技术原理:

可以直接看 electron 源码,都是 ts 代码,容易阅读,源码如下图所示:

从图中可以看出, asar 的核心实现就是对 nodejs 的 fs 模块进行重写。

7.3 源码保护

避免源码泄漏,按照从低到高的源码安全,可以分为以下程度

  1. asar
  2. 代码混淆
  3. WebAssembly
  4. Language bindings

其中,Language bindings 是最高的源码安全措施,其实使用 C++ 或 Rust 代码来编写 electron 应用代码,通过将 C++ 或 Rust 代码编译成二进制代码后,破译的难度会变高。这里我说下如何使用 Rust 去编写 electron 应用代码。

方案:使用 napi-rs 作为工具去编写,如下图所示:

我们采用 pnpm-workspace 去管理 Rust 代码,使用 napi-rs ,比如我们写一个 sum 函数,rs代码如下:

fn sum(a: f64, b: f64) -> f64 {
a + b
}

此时我们加上 napi 装饰代码,如下所示:

use napi_derive::napi;

#[napi]
fn sum(a: f64, b: f64) -> f64 {
a + b
}

在通过 napi-cli 将上述代码编译成 node 可以调用的二进制代码。

编译后,在electron使用上述代码,如下所示:

import { sum as rsSum } from '@rebebuca/native'
// 输出 7
console.log(rsSum(2, 5))

napi-rs 的使用请阅读官方文档,地址是: https://napi.rs/(opens new window)

至此,language bindings 的阐述就完成了。我们通过这种方式,可以完成对重要功能的源码保护。

7.4 应用安全

目前熟知的一个安全问题是克隆攻击,此问题的主流解决方案是将用户认证信息和应用设备指纹进行绑定,整体流程如如下图所示:

  • 应用设备指纹生成:可以用上文阐述的 napi-rs 方案去实现
  • 用户认证信息和设备指纹绑定:使用服务端去实现

7.5 编码安全

主要有以下措施:

  • 常用的 web 安全,比如防 xss 、 csrf
  • 设置 node 可执行环境
  • 窗体开启安全选项
  • 限制链接跳转

以上具体细节不再介绍,自行搜索上述方案。除此之外,还有个官方推荐的最佳安全实践,有空可以看看,地址如下:

https://www.electronjs.org/docs/latest/tutorial/security(opens new window)

至此,安全这块就介绍完了。

八、总结

本文介绍了我们对桌面端技术的调研、确定技术选型,以及用 electron 开发过程中,总结的实践经验,如构建、性能优化、质量保障、安全等。希望对读者在开发桌面应用过程中有所帮助,文章难免有不足和错误的地方,欢迎读者在评论区交流。

责任编辑:张燕妮 来源: vivo互联网技术
相关推荐

2023-02-23 15:56:51

2022-11-30 10:34:17

2022-05-12 11:41:16

开发框架程序

2023-12-26 10:04:29

Electron应用开发框架

2024-11-14 08:10:00

Python开发

2021-07-27 09:00:00

开发Web软件

2024-05-31 08:30:23

2023-06-08 16:47:09

软件开发工具

2022-06-30 13:56:05

Rating鸿蒙

2023-09-02 20:55:04

微服务架构

2023-07-06 14:51:30

开发高质量软件

2019-10-29 09:48:20

ElectronGithub开源库

2023-09-12 13:48:47

2019-09-03 10:24:54

2021-02-25 09:00:00

架构开发运维

2023-10-27 12:11:33

2023-04-06 00:15:03

JavaReentrantL线程

2023-02-24 14:28:56

2022-01-07 08:00:00

Node.js开发Web

2023-10-16 14:41:57

AI人工智能
点赞
收藏

51CTO技术栈公众号