前言
不知道大家有没有遇到这样的场景,就是一个项目中要消费多个kafka消息,不同的消费者消费指定kafka消息。遇到这种场景,我们可以通过kafka的提供的api进行配置即可。但很多时候我们会使用spring-kafka来简化开发,可是spring-kafka原生的配置项并没提供多个kafka配置,因此本文就来聊聊如何将spring-kafka进行改造,使之能支持多个kafka配置
正文
1.通过 @ConfigurationProperties指定KafkaProperties前缀;
@Primary @ConfigurationProperties(prefix = "lybgeek.kafka.one") @Bean public KafkaProperties oneKafkaProperties(){ return new KafkaProperties(); }
如果有多个就配置多个,形如:
@ConfigurationProperties(prefix = "lybgeek.kafka.two") @Bean public KafkaProperties twoKafkaProperties(){ return new KafkaProperties(); } @ConfigurationProperties(prefix = "lybgeek.kafka.three") @Bean public KafkaProperties threeKafkaProperties(){ return new KafkaProperties(); }
2.配置消费者工厂,消费者工厂绑定对应的KafkaProperties;
@Bean public ConsumerFactory twoConsumerFactory(@Autowired @Qualifier("twoKafkaProperties") KafkaProperties twoKafkaProperties){ return new DefaultKafkaConsumerFactory(twoKafkaProperties.buildConsumerProperties()); }
3.配置消费者监听器工厂,并绑定指定消费者工厂以及消费者配置;
@Bean(MultiKafkaConstant.KAFKA_LISTENER_CONTAINER_FACTORY_TWO) public KafkaListenerContainerFactory twoKafkaListenerContainerFactory(@Autowired @Qualifier("twoKafkaProperties") KafkaProperties twoKafkaProperties, @Autowired @Qualifier("twoConsumerFactory") ConsumerFactory twoConsumerFactory) { ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory(); factory.setConsumerFactory(twoConsumerFactory); factory.setConcurrency(ObjectUtil.isEmpty(twoKafkaProperties.getListener().getConcurrency()) ? Runtime.getRuntime().availableProcessors() : twoKafkaProperties.getListener().getConcurrency()); factory.getContainerProperties().setAckMode(ObjectUtil.isEmpty(twoKafkaProperties.getListener().getAckMode()) ? ContainerProperties.AckMode.MANUAL:twoKafkaProperties.getListener().getAckMode()); return factory; }
完整的配置示例如下:
@Configuration@EnableConfigurationProperties(MultiKafkaComsumeProperties.class)public class OneKafkaComsumeAutoConfiguration { @Bean(MultiKafkaConstant.KAFKA_LISTENER_CONTAINER_FACTORY_ONE) public KafkaListenerContainerFactory oneKafkaListenerContainerFactory(@Autowired @Qualifier("oneKafkaProperties") KafkaProperties oneKafkaProperties, @Autowired @Qualifier("oneConsumerFactory") ConsumerFactory oneConsumerFactory) { ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory(); factory.setConsumerFactory(oneConsumerFactory); factory.setConcurrency(ObjectUtil.isEmpty(oneKafkaProperties.getListener().getConcurrency()) ? Runtime.getRuntime().availableProcessors() : oneKafkaProperties.getListener().getConcurrency()); factory.getContainerProperties().setAckMode(ObjectUtil.isEmpty(oneKafkaProperties.getListener().getAckMode()) ? ContainerProperties.AckMode.MANUAL:oneKafkaProperties.getListener().getAckMode()); return factory; } @Primary @Bean public ConsumerFactory oneConsumerFactory(@Autowired @Qualifier("oneKafkaProperties") KafkaProperties oneKafkaProperties){ return new DefaultKafkaConsumerFactory(oneKafkaProperties.buildConsumerProperties()); } @Primary @ConfigurationProperties(prefix = "lybgeek.kafka.one") @Bean public KafkaProperties oneKafkaProperties(){ return new KafkaProperties(); }}折叠
那个 @Primary要指定一下,不然启动会因为存在多个KafkaProperties,而导致kafka的自动装配不懂要选哪个而报错。
@Configuration@ConditionalOnClass(KafkaTemplate.class)@EnableConfigurationProperties(KafkaProperties.class)@Import({ KafkaAnnotationDrivenConfiguration.class, KafkaStreamsAnnotationDrivenConfiguration.class })public class KafkaAutoConfiguration {private final KafkaProperties properties;private final RecordMessageConverter messageConverter;public KafkaAutoConfiguration(KafkaProperties properties, ObjectProvider<RecordMessageConverter> messageConverter) {this.properties = properties;this.messageConverter = messageConverter.getIfUnique();}@Bean@ConditionalOnMissingBean(KafkaTemplate.class)public KafkaTemplate<?, ?> kafkaTemplate(ProducerFactory<Object, Object> kafkaProducerFactory,ProducerListener<Object, Object> kafkaProducerListener) {KafkaTemplate<Object, Object> kafkaTemplate = new KafkaTemplate<>(kafkaProducerFactory);if (this.messageConverter != null) {kafkaTemplate.setMessageConverter(this.messageConverter);}kafkaTemplate.setProducerListener(kafkaProducerListener);kafkaTemplate.setDefaultTopic(this.properties.getTemplate().getDefaultTopic());return kafkaTemplate;}@Bean@ConditionalOnMissingBean(ProducerListener.class)public ProducerListener<Object, Object> kafkaProducerListener() {return new LoggingProducerListener<>();}@Bean@ConditionalOnMissingBean(ConsumerFactory.class)public ConsumerFactory<?, ?> kafkaConsumerFactory() {return new DefaultKafkaConsumerFactory<>(this.properties.buildConsumerProperties());}@Bean@ConditionalOnMissingBean(ProducerFactory.class)public ProducerFactory<?, ?> kafkaProducerFactory() {DefaultKafkaProducerFactory<?, ?> factory = new DefaultKafkaProducerFactory<>(this.properties.buildProducerProperties());String transactionIdPrefix = this.properties.getProducer().getTransactionIdPrefix();if (transactionIdPrefix != null) {factory.setTransactionIdPrefix(transactionIdPrefix);}return factory;}@Bean@ConditionalOnProperty(name = "spring.kafka.producer.transaction-id-prefix")@ConditionalOnMissingBeanpublic KafkaTransactionManager<?, ?> kafkaTransactionManager(ProducerFactory<?, ?> producerFactory) {return new KafkaTransactionManager<>(producerFactory);}@Bean@ConditionalOnProperty(name = "spring.kafka.jaas.enabled")@ConditionalOnMissingBeanpublic KafkaJaasLoginModuleInitializer kafkaJaasInitializer() throws IOException {KafkaJaasLoginModuleInitializer jaas = new KafkaJaasLoginModuleInitializer();Jaas jaasProperties = this.properties.getJaas();if (jaasProperties.getControlFlag() != null) {jaas.setControlFlag(jaasProperties.getControlFlag());}if (jaasProperties.getLoginModule() != null) {jaas.setLoginModule(jaasProperties.getLoginModule());}jaas.setOptions(jaasProperties.getOptions());return jaas;}@Bean@ConditionalOnMissingBeanpublic KafkaAdmin kafkaAdmin() {KafkaAdmin kafkaAdmin = new KafkaAdmin(this.properties.buildAdminProperties());kafkaAdmin.setFatalIfBrokerNotAvailable(this.properties.getAdmin().isFailFast());return kafkaAdmin;}}折叠
同项目使用多个kafka消费者示例:
1.在项目的pom引入spring-kafka GAV;
<dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> </dependency>
2.在项目的yml中配置如下内容;
lybgeek: kafka: multi: comsume-enabled: false one: producer: # kafka生产者服务端地址 bootstrap-servers: ${KAFKA_PRODUCER_BOOTSTRAP_SERVER:10.1.4.71:32643} # 生产者重试的次数 retries: ${KAFKA_PRODUCER_RETRIES:0} # 每次批量发送的数据量 batch-size: ${KAFKA_PRODUCER_BATCH_SIZE:16384} # 每次批量发送消息的缓冲区大小 buffer-memory: ${KAFKA_PRODUCER_BUFFER_MEMOEY:335554432} # 指定消息key和消息体的编码方式 key-serializer: ${KAFKA_PRODUCER_KEY_SERIALIZER:org.apache.kafka.common.serialization.StringSerializer} value-serializer: ${KAFKA_PRODUCER_KEY_SERIALIZER:org.apache.kafka.common.serialization.StringSerializer} # acks=1 只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应。 acks: ${KAFKA_PRODUCER_ACK:1} consumer: bootstrap-servers: ${KAFKA_ONE_CONSUMER_BOOTSTRAP_SERVER:10.1.4.71:32643} # 在偏移量无效的情况下,消费者将从起始位置读取分区的记录 auto-offset-reset: ${KAFKA_ONE_CONSUMER_AUTO_OFFSET_RESET:earliest} # 是否自动提交偏移量,默认值是true,为了避免出现重复数据和数据丢失,可以把它设置为false,然后手动提交偏移量 enable-auto-commit: ${KAFKA_ONE_CONSUMER_ENABLE_AUTO_COMMIT:false} # 指定消息key和消息体的解码方式 key-deserializer: ${KAFKA_ONE_CONSUMER_KEY_DESERIALIZER:org.apache.kafka.common.serialization.StringDeserializer} value-deserializer: ${KAFKA_ONE_CONSUMER_VALUE_DESERIALIZER:org.apache.kafka.common.serialization.StringDeserializer} listener: # 在侦听器容器中运行的线程数。 concurrency: ${KAFKA_ONE_CONSUMER_CONCURRENCY:1} missing-topics-fatal: false ack-mode: ${KAFKA_ONE_CONSUMER_ACK_MODE:manual} two: producer: # kafka生产者服务端地址 bootstrap-servers: ${KAFKA_PRODUCER_BOOTSTRAP_SERVER:192.168.1.3:9202} # 生产者重试的次数 retries: ${KAFKA_PRODUCER_RETRIES:0} # 每次批量发送的数据量 batch-size: ${KAFKA_PRODUCER_BATCH_SIZE:16384} # 每次批量发送消息的缓冲区大小 buffer-memory: ${KAFKA_PRODUCER_BUFFER_MEMOEY:335554432} # 指定消息key和消息体的编码方式 key-serializer: ${KAFKA_PRODUCER_KEY_SERIALIZER:org.apache.kafka.common.serialization.StringSerializer} value-serializer: ${KAFKA_PRODUCER_KEY_SERIALIZER:org.apache.kafka.common.serialization.StringSerializer} # acks=1 只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应。 acks: ${KAFKA_PRODUCER_ACK:1} consumer: bootstrap-servers: ${KAFKA_ONE_CONSUMER_BOOTSTRAP_SERVER:192.168.1.3:9202} # 在偏移量无效的情况下,消费者将从起始位置读取分区的记录 auto-offset-reset: ${KAFKA_ONE_CONSUMER_AUTO_OFFSET_RESET:earliest} # 是否自动提交偏移量,默认值是true,为了避免出现重复数据和数据丢失,可以把它设置为false,然后手动提交偏移量 enable-auto-commit: ${KAFKA_ONE_CONSUMER_ENABLE_AUTO_COMMIT:false} # 指定消息key和消息体的解码方式 key-deserializer: ${KAFKA_ONE_CONSUMER_KEY_DESERIALIZER:org.apache.kafka.common.serialization.StringDeserializer} value-deserializer: ${KAFKA_ONE_CONSUMER_VALUE_DESERIALIZER:org.apache.kafka.common.serialization.StringDeserializer} listener: # 在侦听器容器中运行的线程数。 concurrency: ${KAFKA_ONE_CONSUMER_CONCURRENCY:1} missing-topics-fatal: false ack-mode: ${KAFKA_ONE_CONSUMER_ACK_MODE:manual} 折叠
3.配置生产者;
private KafkaTemplate kafkaTemplate; @Override public MqResp sendSync(MqReq mqReq) { ListenableFuture<SendResult<String, String>> result = this.send(mqReq); MqResp mqResp = this.buildMqResp(result); return mqResp; }
这个KafkaTemplate绑定的就是@Primary配置的kafkaProperties。
4.配置消费者监听,并绑定containerFactory;
@LybGeekKafkaListener(id = "createUser",containerFactory = MultiKafkaConstant.KAFKA_LISTENER_CONTAINER_FACTORY_ONE,topics = Constant.USER_TOPIC)public class UserComsumer extends BaseComusmeListener { @Autowired private UserService userService; @Override public boolean isRepeateConsume(KafkaComsumePayLoad kafkaComsumePayLoad) { User user = JSON.parseObject(kafkaComsumePayLoad.getData(),User.class); System.out.println("-----------------------"); return userService.isExistUserByUsername(user.getUsername()); } @Override public boolean doBiz(KafkaComsumePayLoad kafkaComsumerPayLoad) { User user = JSON.parseObject(kafkaComsumerPayLoad.getData(),User.class); System.out.println(user); return userService.save(user); }}
通过指定containerFactory ,来消费指定的kafka消息;
5.测试;
User user = User.builder().username("test") .email("test@qq.com") .fullname("test") .mobile("1350000001") .password("1234561") .build(); userService.saveAndPush(user);
发送消息,观察控制台输出;
: messageKey:【null】,topic:【user-sync】存在重复消息数据-->【{"email":"test@qq.com","fullname":"test","mobile":"1350000000","password":"123456","username":"test"}】
会出现这样,是因为数据库已经有这条记录了,刚好验证一下重复消费
总结
本文实现的核心其实就是通过注入多个kafkaProperties来实现多配置 ,不知道大家有没有发现,就是改造后的配置,配置消费者后,生产者仍然也要配置。因为如果不配置,走的就是kafkaProperties默认的配置信息,即为localhost。还有细心的朋友也许会发现我示例中的消费者监听使用的注解是@LybGeekKafkaListener,这个和 @KafkaListener实现的功能基本一致。因为本示例和之前的文章聊聊如何实现一个带幂等模板的kafka消费者监听是同份代码,就直接复用了。