聊聊在springboot项目中如何配置多个kafka消费者

开发 前端
本文实现的核心其实就是通过注入多个kafkaProperties来实现多配置 ,不知道大家有没有发现,就是改造后的配置,配置消费者后,生产者仍然也要配置。因为如果不配置,走的就是kafkaProperties默认的配置信息,即为localhost。

前言

不知道大家有没有遇到这样的场景,就是一个项目中要消费多个kafka消息,不同的消费者消费指定kafka消息。遇到这种场景,我们可以通过kafka的提供的api进行配置即可。但很多时候我们会使用spring-kafka来简化开发,可是spring-kafka原生的配置项并没提供多个kafka配置,因此本文就来聊聊如何将spring-kafka进行改造,使之能支持多个kafka配置

正文

1.通过 @ConfigurationProperties指定KafkaProperties前缀;

@Primary    @ConfigurationProperties(prefix = "lybgeek.kafka.one")    @Bean    public KafkaProperties oneKafkaProperties(){        return new KafkaProperties();    }

如果有多个就配置多个,形如:

@ConfigurationProperties(prefix = "lybgeek.kafka.two")    @Bean    public KafkaProperties twoKafkaProperties(){        return new KafkaProperties();    }    @ConfigurationProperties(prefix = "lybgeek.kafka.three")    @Bean    public KafkaProperties threeKafkaProperties(){        return new KafkaProperties();    }

2.配置消费者工厂,消费者工厂绑定对应的KafkaProperties;

@Bean    public ConsumerFactory twoConsumerFactory(@Autowired @Qualifier("twoKafkaProperties") KafkaProperties twoKafkaProperties){        return new DefaultKafkaConsumerFactory(twoKafkaProperties.buildConsumerProperties());    }

3.配置消费者监听器工厂,并绑定指定消费者工厂以及消费者配置;

@Bean(MultiKafkaConstant.KAFKA_LISTENER_CONTAINER_FACTORY_TWO)    public KafkaListenerContainerFactory twoKafkaListenerContainerFactory(@Autowired @Qualifier("twoKafkaProperties") KafkaProperties twoKafkaProperties, @Autowired @Qualifier("twoConsumerFactory") ConsumerFactory twoConsumerFactory) {        ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory();        factory.setConsumerFactory(twoConsumerFactory);        factory.setConcurrency(ObjectUtil.isEmpty(twoKafkaProperties.getListener().getConcurrency()) ? Runtime.getRuntime().availableProcessors() : twoKafkaProperties.getListener().getConcurrency());        factory.getContainerProperties().setAckMode(ObjectUtil.isEmpty(twoKafkaProperties.getListener().getAckMode()) ? ContainerProperties.AckMode.MANUAL:twoKafkaProperties.getListener().getAckMode());        return factory;    }

完整的配置示例如下:

@Configuration@EnableConfigurationProperties(MultiKafkaComsumeProperties.class)public class OneKafkaComsumeAutoConfiguration {    @Bean(MultiKafkaConstant.KAFKA_LISTENER_CONTAINER_FACTORY_ONE)    public KafkaListenerContainerFactory oneKafkaListenerContainerFactory(@Autowired @Qualifier("oneKafkaProperties") KafkaProperties oneKafkaProperties, @Autowired @Qualifier("oneConsumerFactory") ConsumerFactory oneConsumerFactory) {        ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory();        factory.setConsumerFactory(oneConsumerFactory);        factory.setConcurrency(ObjectUtil.isEmpty(oneKafkaProperties.getListener().getConcurrency()) ? Runtime.getRuntime().availableProcessors() : oneKafkaProperties.getListener().getConcurrency());        factory.getContainerProperties().setAckMode(ObjectUtil.isEmpty(oneKafkaProperties.getListener().getAckMode()) ? ContainerProperties.AckMode.MANUAL:oneKafkaProperties.getListener().getAckMode());        return factory;    }    @Primary    @Bean    public ConsumerFactory oneConsumerFactory(@Autowired @Qualifier("oneKafkaProperties") KafkaProperties oneKafkaProperties){        return new DefaultKafkaConsumerFactory(oneKafkaProperties.buildConsumerProperties());    }    @Primary    @ConfigurationProperties(prefix = "lybgeek.kafka.one")    @Bean    public KafkaProperties oneKafkaProperties(){        return new KafkaProperties();    }}折叠

那个 @Primary要指定一下,不然启动会因为存在多个KafkaProperties,而导致kafka的自动装配不懂要选哪个而报错。

@Configuration@ConditionalOnClass(KafkaTemplate.class)@EnableConfigurationProperties(KafkaProperties.class)@Import({ KafkaAnnotationDrivenConfiguration.class, KafkaStreamsAnnotationDrivenConfiguration.class })public class KafkaAutoConfiguration {private final KafkaProperties properties;private final RecordMessageConverter messageConverter;public KafkaAutoConfiguration(KafkaProperties properties, ObjectProvider<RecordMessageConverter> messageConverter) {this.properties = properties;this.messageConverter = messageConverter.getIfUnique();}@Bean@ConditionalOnMissingBean(KafkaTemplate.class)public KafkaTemplate<?, ?> kafkaTemplate(ProducerFactory<Object, Object> kafkaProducerFactory,ProducerListener<Object, Object> kafkaProducerListener) {KafkaTemplate<Object, Object> kafkaTemplate = new KafkaTemplate<>(kafkaProducerFactory);if (this.messageConverter != null) {kafkaTemplate.setMessageConverter(this.messageConverter);}kafkaTemplate.setProducerListener(kafkaProducerListener);kafkaTemplate.setDefaultTopic(this.properties.getTemplate().getDefaultTopic());return kafkaTemplate;}@Bean@ConditionalOnMissingBean(ProducerListener.class)public ProducerListener<Object, Object> kafkaProducerListener() {return new LoggingProducerListener<>();}@Bean@ConditionalOnMissingBean(ConsumerFactory.class)public ConsumerFactory<?, ?> kafkaConsumerFactory() {return new DefaultKafkaConsumerFactory<>(this.properties.buildConsumerProperties());}@Bean@ConditionalOnMissingBean(ProducerFactory.class)public ProducerFactory<?, ?> kafkaProducerFactory() {DefaultKafkaProducerFactory<?, ?> factory = new DefaultKafkaProducerFactory<>(this.properties.buildProducerProperties());String transactionIdPrefix = this.properties.getProducer().getTransactionIdPrefix();if (transactionIdPrefix != null) {factory.setTransactionIdPrefix(transactionIdPrefix);}return factory;}@Bean@ConditionalOnProperty(name = "spring.kafka.producer.transaction-id-prefix")@ConditionalOnMissingBeanpublic KafkaTransactionManager<?, ?> kafkaTransactionManager(ProducerFactory<?, ?> producerFactory) {return new KafkaTransactionManager<>(producerFactory);}@Bean@ConditionalOnProperty(name = "spring.kafka.jaas.enabled")@ConditionalOnMissingBeanpublic KafkaJaasLoginModuleInitializer kafkaJaasInitializer() throws IOException {KafkaJaasLoginModuleInitializer jaas = new KafkaJaasLoginModuleInitializer();Jaas jaasProperties = this.properties.getJaas();if (jaasProperties.getControlFlag() != null) {jaas.setControlFlag(jaasProperties.getControlFlag());}if (jaasProperties.getLoginModule() != null) {jaas.setLoginModule(jaasProperties.getLoginModule());}jaas.setOptions(jaasProperties.getOptions());return jaas;}@Bean@ConditionalOnMissingBeanpublic KafkaAdmin kafkaAdmin() {KafkaAdmin kafkaAdmin = new KafkaAdmin(this.properties.buildAdminProperties());kafkaAdmin.setFatalIfBrokerNotAvailable(this.properties.getAdmin().isFailFast());return kafkaAdmin;}}折叠

同项目使用多个kafka消费者示例:

1.在项目的pom引入spring-kafka GAV;

<dependency>            <groupId>org.springframework.kafka</groupId>            <artifactId>spring-kafka</artifactId>        </dependency>

2.在项目的yml中配置如下内容;

lybgeek:    kafka:        multi:            comsume-enabled: false        one:            producer:                # kafka生产者服务端地址                bootstrap-servers: ${KAFKA_PRODUCER_BOOTSTRAP_SERVER:10.1.4.71:32643}                # 生产者重试的次数                retries: ${KAFKA_PRODUCER_RETRIES:0}                # 每次批量发送的数据量                batch-size: ${KAFKA_PRODUCER_BATCH_SIZE:16384}                # 每次批量发送消息的缓冲区大小                buffer-memory: ${KAFKA_PRODUCER_BUFFER_MEMOEY:335554432}                # 指定消息key和消息体的编码方式                key-serializer: ${KAFKA_PRODUCER_KEY_SERIALIZER:org.apache.kafka.common.serialization.StringSerializer}                value-serializer:  ${KAFKA_PRODUCER_KEY_SERIALIZER:org.apache.kafka.common.serialization.StringSerializer}                # acks=1 只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应。                acks: ${KAFKA_PRODUCER_ACK:1}            consumer:                bootstrap-servers: ${KAFKA_ONE_CONSUMER_BOOTSTRAP_SERVER:10.1.4.71:32643}                # 在偏移量无效的情况下,消费者将从起始位置读取分区的记录                auto-offset-reset: ${KAFKA_ONE_CONSUMER_AUTO_OFFSET_RESET:earliest}                #  是否自动提交偏移量,默认值是true,为了避免出现重复数据和数据丢失,可以把它设置为false,然后手动提交偏移量                enable-auto-commit: ${KAFKA_ONE_CONSUMER_ENABLE_AUTO_COMMIT:false}                # 指定消息key和消息体的解码方式                key-deserializer: ${KAFKA_ONE_CONSUMER_KEY_DESERIALIZER:org.apache.kafka.common.serialization.StringDeserializer}                value-deserializer:  ${KAFKA_ONE_CONSUMER_VALUE_DESERIALIZER:org.apache.kafka.common.serialization.StringDeserializer}            listener:                # 在侦听器容器中运行的线程数。                concurrency: ${KAFKA_ONE_CONSUMER_CONCURRENCY:1}                missing-topics-fatal: false                ack-mode: ${KAFKA_ONE_CONSUMER_ACK_MODE:manual}                    two:        producer:            # kafka生产者服务端地址            bootstrap-servers: ${KAFKA_PRODUCER_BOOTSTRAP_SERVER:192.168.1.3:9202}            # 生产者重试的次数            retries: ${KAFKA_PRODUCER_RETRIES:0}            # 每次批量发送的数据量            batch-size: ${KAFKA_PRODUCER_BATCH_SIZE:16384}            # 每次批量发送消息的缓冲区大小            buffer-memory: ${KAFKA_PRODUCER_BUFFER_MEMOEY:335554432}            # 指定消息key和消息体的编码方式            key-serializer: ${KAFKA_PRODUCER_KEY_SERIALIZER:org.apache.kafka.common.serialization.StringSerializer}            value-serializer:  ${KAFKA_PRODUCER_KEY_SERIALIZER:org.apache.kafka.common.serialization.StringSerializer}            # acks=1 只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应。            acks: ${KAFKA_PRODUCER_ACK:1}            consumer:                bootstrap-servers: ${KAFKA_ONE_CONSUMER_BOOTSTRAP_SERVER:192.168.1.3:9202}                # 在偏移量无效的情况下,消费者将从起始位置读取分区的记录                auto-offset-reset: ${KAFKA_ONE_CONSUMER_AUTO_OFFSET_RESET:earliest}                #  是否自动提交偏移量,默认值是true,为了避免出现重复数据和数据丢失,可以把它设置为false,然后手动提交偏移量                enable-auto-commit: ${KAFKA_ONE_CONSUMER_ENABLE_AUTO_COMMIT:false}                # 指定消息key和消息体的解码方式                key-deserializer: ${KAFKA_ONE_CONSUMER_KEY_DESERIALIZER:org.apache.kafka.common.serialization.StringDeserializer}                value-deserializer:  ${KAFKA_ONE_CONSUMER_VALUE_DESERIALIZER:org.apache.kafka.common.serialization.StringDeserializer}            listener:                # 在侦听器容器中运行的线程数。                concurrency: ${KAFKA_ONE_CONSUMER_CONCURRENCY:1}                missing-topics-fatal: false                ack-mode: ${KAFKA_ONE_CONSUMER_ACK_MODE:manual}        折叠

3.配置生产者;

private KafkaTemplate kafkaTemplate;    @Override    public MqResp sendSync(MqReq mqReq) {        ListenableFuture<SendResult<String, String>> result = this.send(mqReq);        MqResp mqResp = this.buildMqResp(result);        return mqResp;    }

这个KafkaTemplate绑定的就是@Primary配置的kafkaProperties。

4.配置消费者监听,并绑定containerFactory;

@LybGeekKafkaListener(id = "createUser",containerFactory = MultiKafkaConstant.KAFKA_LISTENER_CONTAINER_FACTORY_ONE,topics = Constant.USER_TOPIC)public class UserComsumer extends BaseComusmeListener {    @Autowired    private UserService userService;    @Override    public boolean isRepeateConsume(KafkaComsumePayLoad kafkaComsumePayLoad) {        User user = JSON.parseObject(kafkaComsumePayLoad.getData(),User.class);        System.out.println("-----------------------");        return userService.isExistUserByUsername(user.getUsername());    }    @Override    public boolean doBiz(KafkaComsumePayLoad kafkaComsumerPayLoad) {        User user = JSON.parseObject(kafkaComsumerPayLoad.getData(),User.class);        System.out.println(user);        return userService.save(user);    }}

通过指定containerFactory ,来消费指定的kafka消息;

5.测试;

User user = User.builder().username("test")                .email("test@qq.com")                .fullname("test")                .mobile("1350000001")                .password("1234561")                .build();      userService.saveAndPush(user);

发送消息,观察控制台输出;

: messageKey:【null】,topic:【user-sync】存在重复消息数据-->【{"email":"test@qq.com","fullname":"test","mobile":"1350000000","password":"123456","username":"test"}】

会出现这样,是因为数据库已经有这条记录了,刚好验证一下重复消费

总结

本文实现的核心其实就是通过注入多个kafkaProperties来实现多配置 ,不知道大家有没有发现,就是改造后的配置,配置消费者后,生产者仍然也要配置。因为如果不配置,走的就是kafkaProperties默认的配置信息,即为localhost。还有细心的朋友也许会发现我示例中的消费者监听使用的注解是@LybGeekKafkaListener,这个和 @KafkaListener实现的功能基本一致。因为本示例和之前的文章聊聊如何实现一个带幂等模板的kafka消费者监听是同份代码,就直接复用了。

责任编辑:武晓燕 来源: 今日头条
相关推荐

2023-06-01 08:08:38

kafka消费者分区策略

2022-06-20 10:45:55

SpringBoot项目

2021-10-26 10:50:25

Kafkabroker

2021-07-08 05:52:34

Kafka架构主从架构

2022-01-04 06:51:53

AI消费者行为

2018-09-15 05:09:28

2015-08-26 09:39:30

java消费者

2022-07-07 09:00:49

RocketMQ消费者消息消费

2011-08-05 16:21:24

2011-07-22 16:25:38

CA TechnoloIT消费化

2021-06-28 11:45:28

Kafka消费者参数

2021-04-21 10:49:36

稳定币比特币货币

2013-07-05 18:35:47

2017-05-10 09:46:27

2022-08-08 10:55:31

5G物联网智能手机

2023-12-12 10:36:29

人工智能AI预测分析

2009-08-13 13:14:31

C#生产者和消费者

2021-12-28 12:01:59

Kafka 消费者机制

2021-03-25 20:45:24

VRAR虚拟现实技术

2024-01-12 14:55:27

点赞
收藏

51CTO技术栈公众号