神器啊!比requests还好用的Python高效爬虫框架!

开发 后端
虽然之前有了解过"协程"是什么东西,但并没有深入探索,于是正好借着这次机会可以好好学习一下。

最近公司  Python 后端项目进行重构,整个后端逻辑基本都变更为采用"异步"协程的方式实现。看着满屏幕经过 async await(协程在 Python 中的实现)修饰的代码,我顿时感到一脸懵逼,不知所措。

虽然之前有了解过"协程"是什么东西,但并没有深入探索,于是正好借着这次机会可以好好学习一下。

Let's go

什么是协程?

简单来说,协程是一种基于线程之上,但又比线程更加轻量级的存在。对于系统内核来说,协程具有不可见的特性,所以这种由 程序员自己写程序来管理 的轻量级线程又常被称作 "用户空间线程"。

协程比多线程好在哪呢?

1. 线程的控制权在操作系统手中,而协程的控制权完全掌握在用户自己手中,因此利用协程可以减少程序运行时的上下文切换,有效提高程序运行效率。

2. 建立线程时,系统默认分配给线程的栈大小是 1 M,而协程更轻量,接近 1 K ,因此可以在相同的内存中开启更多的协程。

3. 由于协程的本质不是多线程而是单线程,所以不需要多线程的锁机制。因为只有一个线程,也不存在同时写变量而引起的冲突。在协程中控制共享资源不需要加锁,只需要判断状态即可。所以协程的执行效率比多线程高很多,同时也有效避免了多线程中的竞争关系。

协程的适用 & 不适用场景

适用场景:协程适用于被阻塞的,且需要大量并发的场景。

不适用场景:协程不适用于存在大量计算的场景(因为协程的本质是单线程来回切换),如果遇到这种情况,还是应该使用其他手段去解决。

初探异步 http 框架 httpx

至此我们对 "协程" 应该有了个大概的了解,但故事说到这里,相信有朋友还是满脸疑问:"协程" 对于接口测试有什么帮助呢?不要着急,答案就在下面。

相信用过 Python 做接口测试的朋友都对 requests 库不陌生。requests 中实现的 http 请求是同步请求,但其实基于 http 请求 IO 阻塞的特性,非常适合用协程来实现 "异步" http 请求从而提升测试效率。  

相信早就有人注意到了这点,于是在 Github 经过了一番探索后,果不其然,最终寻找到了支持协程 "异步" 调用 http 的开源库: httpx。

什么是 httpx

httpx 是一个几乎继承了所有 requests 的特性并且支持 "异步" http 请求的开源库。简单来说,可以认为 httpx 是强化版 requests。

下面大家可以跟着我一起见识一下 httpx 的强大。

安装

httpx 的安装非常简单,在 Python 3.6 以上的环境执行。

pip install httpx

最佳实践

俗话说得好,效率决定成败。我分别使用了 httpx 异步 和 同步 的方式对批量 http 请求进行了耗时比较,来一起看看结果吧~

首先来看看同步 http 请求的耗时表现:

import asyncio
import httpx
import threading
import time
def sync_main(url, sign):
response = httpx.get(url).status_code
print(f'sync_main: {threading.current_thread()}: {sign}2 + 1{response}')
sync_start = time.time()
[sync_main(url='http://www.baidu.com', sign=i) for i in range(200)]
sync_end = time.time()
print(sync_end - sync_start)

代码比较简单,可以看到在 sync_main 中则实现了同步 http 访问百度 200 次。

运行后输出如下(截取了部分关键输出...):

sync_main: <_MainThread(MainThread, started 4471512512)>: 192: 200
sync_main: <_MainThread(MainThread, started 4471512512)>: 193: 200
sync_main: <_MainThread(MainThread, started 4471512512)>: 194: 200
sync_main: <_MainThread(MainThread, started 4471512512)>: 195: 200
sync_main: <_MainThread(MainThread, started 4471512512)>: 196: 200
sync_main: <_MainThread(MainThread, started 4471512512)>: 197: 200
sync_main: <_MainThread(MainThread, started 4471512512)>: 198: 200
sync_main: <_MainThread(MainThread, started 4471512512)>: 199: 200
16.56578803062439

可以看到在上面的输出中, 主线程没有进行切换(因为本来就是单线程啊喂!)请求按照顺序执行(因为是同步请求)。

程序运行共耗时 16.6 秒。

下面我们试试 "异步" http 请求:

import asyncio
import httpx
import threading
import time
client = httpx.AsyncClient()
async def async_main(url, sign):
response = await client.get(url)
status_code = response.status_code
print(f'async_main: {threading.current_thread()}: {sign}:{status_code}')
loop = asyncio.get_event_loop()
tasks = [async_main(url='http://www.baidu.com', sign=i) for i in range(200)]
async_start = time.time()
loop.run_until_complete(asyncio.wait(tasks))
async_end = time.time()
loop.close()
print(async_end - async_start)

上述代码在 async_main 中用 async await 关键字实现了"异步" http,通过 asyncio ( 异步 io 库请求百度首页 200 次并打印出了耗时)。

运行代码后可以看到如下输出(截取了部分关键输出...)。

async_main: <_MainThread(MainThread, started 4471512512)>: 56: 200
async_main: <_MainThread(MainThread, started 4471512512)>: 99: 200
async_main: <_MainThread(MainThread, started 4471512512)>: 67: 200
async_main: <_MainThread(MainThread, started 4471512512)>: 93: 200
async_main: <_MainThread(MainThread, started 4471512512)>: 125: 200
async_main: <_MainThread(MainThread, started 4471512512)>: 193: 200
async_main: <_MainThread(MainThread, started 4471512512)>: 100: 200
4.518340110778809

可以看到顺序虽然是乱的(56,99,67...) (这是因为程序在协程间不停切换) 但是主线程并没有切换 (协程本质还是单线程 )。

程序共耗时 4.5 秒。

比起同步请求耗时的 16.6 秒 缩短了接近 73 %!

俗话说得好,一步快,步步快。 在耗时方面,"异步" httpx 确实比同步 http 快了很多。当然,"协程" 不仅仅能在请求效率方面赋能接口测试, 掌握 "协程"后,相信小伙伴们的技术水平也能提升一个台阶,从而设计出更优秀的测试框架。

好了,这就是今天分享的全部内容,喜欢就点个赞吧~

责任编辑:庞桂玉 来源: Python见习室
相关推荐

2021-01-07 05:12:27

Persepolis应用下载神器

2021-06-15 05:15:30

DeepL翻译神器应用

2022-10-26 10:15:53

GoFramePHP数组

2020-06-18 15:53:06

Python代码抠图

2021-07-31 07:11:01

WPSExcel软件

2020-08-12 09:44:10

AI 数据人工智能

2023-01-30 09:09:51

GoFramePHP数组

2023-11-27 17:17:52

文件搜索应用程序

2021-07-21 08:59:10

requestsPython协程

2020-10-07 22:26:02

微信工具电脑

2021-05-08 10:35:02

开发者技能工具

2021-08-28 23:19:35

Windows 10Windows微软

2017-05-27 20:00:30

Python爬虫神器PyQuery

2022-05-15 15:14:04

爬虫Requests反爬

2022-10-09 10:11:30

Python爬虫神器

2022-04-25 10:04:56

df命令Linux

2022-04-20 12:17:50

命令Batcat

2019-06-12 10:18:03

GitHub代码开发者

2023-10-08 07:54:13

printlnJITJVM

2010-03-19 09:39:17

Python编程语言
点赞
收藏

51CTO技术栈公众号