聊一聊Python 实现数据的序列化操作

开发 前端
在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。

​在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:

  • json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;
  • json 是我们可以直观阅读的,而 pickle 不可以;
  • json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;
  • 默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的类;但 pickle 可以表示大量的 Python 数据类型。

Json 模块

Json 是一种轻量级的数据交换格式,由于其具有传输数据量小、数据格式易解析等特点,它被广泛应用于各系统之间的交互操作,作为一种数据格式传递数据。它包含多个常用函数,具体如下:

dumps()函数

dumps()函数可以将 Python 对象编码成 Json 字符串。例如:

#字典转成json字符串 加上ensure_ascii=False以后,可以识别中文, indent=4是间隔4个空格显示   

import json
d={'小明':{'sex':'男','addr':'上海','age':26},'小红':{ 'sex':'女','addr':'上海', 'age':24},}
print(json.dumps(d,ensure_ascii=False,indent=4))

#执行结果:
{
"小明": {
"sex": "男",
"addr": "上海",
"age": 26
},
"小红": {
"sex": "女",
"addr": "上海",
"age": 24
}
}

dump()函数

dump()函数可以将 Python对象编码成 json 字符串,自动写入到文件中,不需要再单独写文件。例如:

#字典转成json字符串,不需要写文件,自动转成的json字符串写入到‘users.json’的文件中 
import json
d={'小明':{'sex':'男','addr':'上海','age':26},'小红':{ 'sex':'女','addr':'上海', 'age':24},}
#打开一个名字为‘users.json’的空文件
fw =open('users.json','w',encoding='utf-8')

json.dump(d,fw,ensure_ascii=False,indent=4)

loads()函数

loads()函数可以将 json 字符串转换成 Python 的数据类型。例如:

#这是users.json文件中的内容
{
"小明":{
"sex":"男",
"addr":"上海",
"age":26
},
"小红":{
"sex":"女",
"addr":"上海",
"age":24
}
}

#!/usr/bin/python3
#把json串变成python的数据类型
import json
#打开‘users.json’的json文件
f =open('users.json','r',encoding='utf-8')
#读文件
res=f.read()
print(json.loads(res))

#执行结果:
{'小明': {'sex': '男', 'addr': '上海', 'age': 26}, '小红': {'sex': '女', 'addr': '上海', 'age': 24}}

load()函数

load()跟loads()功能相似,load()函数可以将 json 字符串转换成 Python 数据类型,不同的是前者的参数是一个文件对象,不需要再单独读此文件。例如:

#把json串变成python的数据类型:字典,传一个文件对象,不需要再单独读文件 
import json
#打开文件
f =open('users.json','r',encoding='utf-8')
print(json.load(f))

#执行结果:
{'小明': {'sex': '男', 'addr': '上海', 'age': 26}, '小红': {'sex': '女', 'addr': '上海', 'age': 24}}

Pickle 模块

Pickle 模块与 Json 模块功能相似,也包含四个函数,即 dump()、dumps()、loads() 和 load(),它们的主要区别如下:

dumps 和 dump 的区别在于前者是将对象序列化,而后者是将对象序列化并保存到文件中。

loads 和 load 的区别在于前者是将序列化的字符串反序列化,而后者是将序列化的字符串从文件读取并反序列化。

dumps()函数

dumps()函数可以将数据通过特殊的形式转换为只有python语言认识的字符串,例如:

import pickle
# dumps功能
import pickle
data = ['A', 'B', 'C','D']
print(pickle.dumps(data))

b'\x80\x03]q\x00(X\x01\x00\x00\x00Aq\x01X\x01\x00\x00\x00Bq\x02X\x01\x00\x00\x00Cq\x03X\x01\x00\x00\x00Dq\x04e.'

dump()函数

dump()函数可以将数据通过特殊的形式转换为只有python语言认识的字符串,并写入文件。例如:

# dump功能
with open('test.txt', 'wb') as f:
pickle.dump(data, f)
print('写入成功')

写入成功

loads()函数

loads()函数可以将pickle数据转换为python的数据结构。例如:

# loads功能
msg = pickle.loads(datastr)
print(msg)

['A', 'B', 'C', 'D']

load()函数

load()函数可以从数据文件中读取数据,并转换为python的数据结构。例如:

# load功能
with open('test.txt', 'rb') as f:
data = pickle.load(f)
print(data)

['A', 'B', 'C', 'D']

总结

本节给大家介绍 Python 中 json&pickle 模块的常用操作,对于实现数据的序列化和反序列化提供了支撑。


责任编辑:华轩 来源: 今日头条
相关推荐

2022-08-30 10:15:27

Kubernetes数据持久化管理

2021-08-01 09:55:57

Netty时间轮中间件

2023-09-27 09:04:50

2021-01-01 09:01:05

前端组件化设计

2024-09-12 10:06:21

2019-12-02 16:23:03

Python编程语言“垃圾”回收

2023-11-02 08:37:46

Python换行转义

2020-07-16 14:40:23

大数据计算框架

2017-12-26 14:56:44

虚拟化基础知识

2024-04-29 14:58:48

Python内置函数

2022-04-13 18:01:39

CSS组件技巧

2023-07-06 13:56:14

微软Skype

2017-12-26 10:19:14

大数据问题缺陷

2019-12-12 14:52:10

数据库脚本

2020-09-08 06:54:29

Java Gradle语言

2024-02-23 15:51:40

PythonBlaze延迟计算

2023-10-12 09:58:45

操作符C++

2023-09-22 17:36:37

2021-01-28 22:31:33

分组密码算法

2020-05-22 08:16:07

PONGPONXG-PON
点赞
收藏

51CTO技术栈公众号