高性能限流器 Guava RateLimiter

开发
本文我们介绍了 Guava 是如何实现令牌桶算法的,我们的示例代码是对 Guava RateLimiter 的简化,Guava RateLimiter 扩展了标准的令牌桶算法,比如还能支持预热功能。

今天来聊一聊Guava RateLimiter 是如何解决高并发场景下的限流问题的。

Guava 是 Google 开源的 Java 类库,提供了一个工具类 RateLimiter。我们先来看看 RateLimiter 的使用,让你对限流有个感官的印象。假设我们有一个线程池,它每秒只能处理两个任务,如果提交的任务过快,可能导致系统不稳定,这个时候就需要用到限流。

在下面的示例代码中,我们创建了一个流速为 2 个请求 / 秒的限流器,这里的流速该怎么理解呢?直观地看,2 个请求 / 秒指的是每秒最多允许 2 个请求通过限流器,其实在 Guava 中,流速还有更深一层的意思:是一种匀速的概念,2 个请求 / 秒等价于 1 个请求 /500 毫秒。

在向线程池提交任务之前,调用 acquire() 方法就能起到限流的作用。通过示例代码的执行结果,任务提交到线程池的时间间隔基本上稳定在 500 毫秒。

//限流器流速:2个请求/秒
RateLimiter limiter =
RateLimiter.create(2.0);
//执行任务的线程池
ExecutorService es = Executors
.newFixedThreadPool(1);
//记录上一次执行时间
prev = System.nanoTime();
//测试执行20次
for (int i=0; i<20; i++){
//限流器限流
limiter.acquire();
//提交任务异步执行
es.execute(()->{
long cur=System.nanoTime();
//打印时间间隔:毫秒
System.out.println(
(cur-prev)/1000_000);
prev = cur;
});
}

输出结果:
...
500
499
499
500
499

经典限流算法:令牌桶算法

Guava 的限流器使用上还是很简单的,那它是如何实现的呢?Guava 采用的是令牌桶算法,其核心是要想通过限流器,必须拿到令牌。也就是说,只要我们能够限制发放令牌的速率,那么就能控制流速了。令牌桶算法的详细描述如下:

  • 令牌以固定的速率添加到令牌桶中,假设限流的速率是 r/ 秒,则令牌每 1/r 秒会添加一个;
  • 假设令牌桶的容量是 b ,如果令牌桶已满,则新的令牌会被丢弃;
  • 请求能够通过限流器的前提是令牌桶中有令牌。

这个算法中,限流的速率 r 还是比较容易理解的,但令牌桶的容量 b 该怎么理解呢?b 其实是 burst 的简写,意义是限流器允许的最大突发流量。比如 b=10,而且令牌桶中的令牌已满,此时限流器允许 10 个请求同时通过限流器,当然只是突发流量而已,这 10 个请求会带走 10 个令牌,所以后续的流量只能按照速率 r 通过限流器。

令牌桶这个算法,如何用 Java 实现呢?很可能你的直觉会告诉你生产者 - 消费者模式:一个生产者线程定时向阻塞队列中添加令牌,而试图通过限流器的线程则作为消费者线程,只有从阻塞队列中获取到令牌,才允许通过限流器。

这个算法看上去非常完美,而且实现起来非常简单,如果并发量不大,这个实现并没有什么问题。可实际情况却是使用限流的场景大部分都是高并发场景,而且系统压力已经临近极限了,此时这个实现就有问题了。问题就出在定时器上,在高并发场景下,当系统压力已经临近极限的时候,定时器的精度误差会非常大,同时定时器本身会创建调度线程,也会对系统的性能产生影响。

那还有什么好的实现方式呢?当然有,Guava 的实现就没有使用定时器,下面我们就来看看它是如何实现的。

Guava 如何实现令牌桶算法

Guava 实现令牌桶算法,用了一个很简单的办法,其关键是记录并动态计算下一令牌发放的时间。

下面我们以一个最简单的场景来介绍该算法的执行过程。假设令牌桶的容量为 b=1,限流速率 r = 1 个请求 / 秒,如下图所示,如果当前令牌桶中没有令牌,下一个令牌的发放时间是在第 3 秒,而在第 2 秒的时候有一个线程 T1 请求令牌,此时该如何处理呢?

图片

线程 T1 请求令牌示意图

对于这个请求令牌的线程而言,很显然需要等待 1 秒,因为 1 秒以后(第 3 秒)它就能拿到令牌了。此时需要注意的是,下一个令牌发放的时间也要增加 1 秒,为什么呢?因为第 3 秒发放的令牌已经被线程 T1 预占了。处理之后如下图所示。

图片

线程 T1 请求结束示意图

假设 T1 在预占了第 3 秒的令牌之后,马上又有一个线程 T2 请求令牌,如下图所示。

图片

线程 T2 请求结束示意图

上面线程 T1、T2 都是在下一令牌产生时间之前请求令牌,如果线程在下一令牌产生时间之后请求令牌会如何呢?假设在线程 T1 请求令牌之后的 5 秒,也就是第 7 秒,线程 T3 请求令牌,如下图所示。

图片

线程 T3 请求令牌示意图

由于在第 5 秒已经产生了一个令牌,所以此时线程 T3 可以直接拿到令牌,而无需等待。在第 7 秒,实际上限流器能够产生 3 个令牌,第 5、6、7 秒各产生一个令牌。由于我们假设令牌桶的容量是 1,所以第 6、7 秒产生的令牌就丢弃了,其实等价地你也可以认为是保留的第 7 秒的令牌,丢弃的第 5、6 秒的令牌,也就是说第 7 秒的令牌被线程 T3 占有了,于是下一令牌的的产生时间应该是第 8 秒,如下图所示。

图片

线程 T3 请求结束示意图

通过上面简要地分析,你会发现,我们只需要记录一个下一令牌产生的时间,并动态更新它,就能够轻松完成限流功能。我们可以将上面的这个算法代码化,示例代码如下所示,依然假设令牌桶的容量是 1。关键是 reserve() 方法,这个方法会为请求令牌的线程预分配令牌,同时返回该线程能够获取令牌的时间。其实现逻辑就是上面提到的:如果线程请求令牌的时间在下一令牌产生时间之后,那么该线程立刻就能够获取令牌;反之,如果请求时间在下一令牌产生时间之前,那么该线程是在下一令牌产生的时间获取令牌。由于此时下一令牌已经被该线程预占,所以下一令牌产生的时间需要加上 1 秒。

class SimpleLimiter {
//下一令牌产生时间
long next = System.nanoTime();
//发放令牌间隔:纳秒
long interval = 1000_000_000;
//预占令牌,返回能够获取令牌的时间
synchronized long reserve(long now){
//请求时间在下一令牌产生时间之后
//重新计算下一令牌产生时间
if (now > next){
//将下一令牌产生时间重置为当前时间
next = now;
}
//能够获取令牌的时间
long at=next;
//设置下一令牌产生时间
next += interval;
//返回线程需要等待的时间
return Math.max(at, 0L);
}
//申请令牌
void acquire() {
//申请令牌时的时间
long now = System.nanoTime();
//预占令牌
long at=reserve(now);
long waitTime=max(at-now, 0);
//按照条件等待
if(waitTime > 0) {
try {
TimeUnit.NANOSECONDS
.sleep(waitTime);
}catch(InterruptedException e){
e.printStackTrace();
}
}
}
}

如果令牌桶的容量大于 1,又该如何处理呢?按照令牌桶算法,令牌要首先从令牌桶中出,所以我们需要按需计算令牌桶中的数量,当有线程请求令牌时,先从令牌桶中出。具体的代码实现如下所示。我们增加了一个 resync() ​方法,在这个方法中,如果线程请求令牌的时间在下一令牌产生时间之后,会重新计算令牌桶中的令牌数,新产生的令牌的计算公式是:(now-next)/interval,你可对照上面的示意图来理解。reserve() 方法中,则增加了先从令牌桶中出令牌的逻辑,不过需要注意的是,如果令牌是从令牌桶中出的,那么 next 就无需增加一个 interval 了。

class SimpleLimiter {
//当前令牌桶中的令牌数量
long storedPermits = 0;
//令牌桶的容量
long maxPermits = 3;
//下一令牌产生时间
long next = System.nanoTime();
//发放令牌间隔:纳秒
long interval = 1000_000_000;

//请求时间在下一令牌产生时间之后,则
// 1.重新计算令牌桶中的令牌数
// 2.将下一个令牌发放时间重置为当前时间
void resync(long now) {
if (now > next) {
//新产生的令牌数
long newPermits=(now-next)/interval;
//新令牌增加到令牌桶
storedPermits=min(maxPermits,
storedPermits + newPermits);
//将下一个令牌发放时间重置为当前时间
next = now;
}
}
//预占令牌,返回能够获取令牌的时间
synchronized long reserve(long now){
resync(now);
//能够获取令牌的时间
long at = next;
//令牌桶中能提供的令牌
long fb=min(1, storedPermits);
//令牌净需求:首先减掉令牌桶中的令牌
long nr = 1 - fb;
//重新计算下一令牌产生时间
next = next + nr*interval;
//重新计算令牌桶中的令牌
this.storedPermits -= fb;
return at;
}
//申请令牌
void acquire() {
//申请令牌时的时间
long now = System.nanoTime();
//预占令牌
long at=reserve(now);
long waitTime=max(at-now, 0);
//按照条件等待
if(waitTime > 0) {
try {
TimeUnit.NANOSECONDS
.sleep(waitTime);
}catch(InterruptedException e){
e.printStackTrace();
}
}
}
}

总结

经典的限流算法有两个,一个是令牌桶算法(Token Bucket),另一个是漏桶算法(Leaky Bucket)。令牌桶算法是定时向令牌桶发送令牌,请求能够从令牌桶中拿到令牌,然后才能通过限流器;

而漏桶算法里,请求就像水一样注入漏桶,漏桶会按照一定的速率自动将水漏掉,只有漏桶里还能注入水的时候,请求才能通过限流器。令牌桶算法和漏桶算法很像一个硬币的正反面,所以你可以参考令牌桶算法的实现来实现漏桶算法。

上面我们介绍了 Guava 是如何实现令牌桶算法的,我们的示例代码是对 Guava RateLimiter 的简化,Guava RateLimiter 扩展了标准的令牌桶算法,比如还能支持预热功能。对于按需加载的缓存来说,预热后缓存能支持 5 万 TPS 的并发,但是在预热前 5 万 TPS 的并发直接就把缓存击垮了,所以如果需要给该缓存限流,限流器也需要支持预热功能,在初始阶段,限制的流速 r 很小,但是动态增长的。预热功能的实现非常复杂,Guava 构建了一个积分函数来解决这个问题,如果你感兴趣,可以继续深入研究。

责任编辑:赵宁宁 来源: 码猿技术专栏
相关推荐

2014-12-25 09:47:59

GuavaGuava并发

2024-12-02 08:02:36

2021-05-21 12:36:16

限流代码Java

2023-10-31 07:52:10

2021-05-31 07:01:46

限流算法令牌

2024-09-09 11:35:35

2009-11-17 14:05:57

微软高性能计算服务器

2019-07-31 14:36:46

Linux服务器框架

2011-04-07 13:39:24

WebHTTP

2010-03-10 10:09:56

2021-07-27 16:01:29

高并发定时器高性能

2014-04-09 10:50:01

Squid架构缓存服务器

2021-09-22 16:25:17

服务器戴尔科技集团

2012-11-08 09:57:29

低功耗高性能服务器处理器

2019-03-01 11:03:22

Lustre高性能计算

2010-05-07 17:50:31

Unix服务器

2011-03-11 09:51:47

Java NIO

2017-12-20 14:59:44

服务器

2019-01-15 10:54:03

高性能ServerReactor

2023-12-14 08:01:08

事件管理器Go
点赞
收藏

51CTO技术栈公众号