零样本学习超越CLIP!谷歌提出首个多模态稀疏化模型LIMoE,还能降低计算成本

人工智能 新闻
谷歌带来最新成果LIMoE,首次将稀疏化方法用在了图像文本混合模型上。

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

多模态模型常见,但是基于稀疏化的还是头一个。

谷歌带来最新成果LIMoE,首次将稀疏化方法用在了图像文本混合模型上。

要知道,随着大模型参数呈指数级增加,训练成本也是一路飙升。

所以如何降低训练成本,成为了目前学界重点关注的一个问题。

谷歌想到的办法,不是拼硬件,而是从模型本身入手。

利用稀疏化的方法,让每次输入只需激活部分网络就能完成任务。

它们在模型内部设置了很多“专家”,每个“专家”只需处理对应部分的输入,根据任务情况按需使用“专家”就好。

这样一来,尽管模型容量很大,但是计算成本并没有暴增

图片

而且还不会降低性能。

新方法LIMoE零样本学习任务中,可是直接超越了CLIP。

怪不得网友高呼:

快分享给我们API!

图片

让不同“专家”处理不同任务

对于深度学习来说,能同时处理文本图像任务其实已经不稀奇。

不过过去常见的多模态学习方法,往往是单个输入就需要激活整个网络。

谷歌这次提出的新方法,最大亮点就是首次在这一领域采用了稀疏化模型

稀疏化的方法便是无需让整个模型来处理所有的输入。

通过对神经网络进行划分,它让神经网络也“专业对口”,不同的子模型只处理固定类型的任务或数据。

但也不是完全割裂开来,模型内部仍有可共享的部分。

此次基于的模型是MoE(Mixture-of-Experts layer),它被称为专家混合模型。

也就是在Transformer架构的基础上,加设了“专家层”。

它是一个并行的FNN,取代了原本的前馈网络。

这里的“专家”,也就是模型内部的不同子模型。

每个子模型专门用于不同的输入。

每一层中的专家由门控网络控制,该网络根据输入数据激活专家。

对于每个标记,门控网络选择最合适的专家来处理数据。

图片

此次新提出的LIMoE,其实就是让MoE能同时处理图像文本

具体来看,就是让LIMoE进行对比学习。

在利用大量图像-文本对训练时,网络内部的图像模型提取图像表示,文本模型提取文本表示。

针对相同的图像-文本对,模型会拉近图像和文本表示的距离。

反之,对于不同的图像-文本对,则会让相应的表示彼此远离。

这样一来的直接好处,就是能实现零样本学习

比如一张图像的表示更接近文本“狗”的表示,那么它就会被归类为狗。

这种思路可以扩展到数千种情况。

实际上,CLIP和ALIGAN采用的都是这个思路,它们在ImageNet数据集上的精度分别是76.2%、76.4%。

而LIMoE-L/16可以达到78.6%,已经超过了CLIP。

未经过预训练的LIMoE H/14则能达到84.1%的精度。

图片

图片

而在LIMoE的专家层中,谷歌表示还发现了一些有趣的现象。

比如在训练设置中,图像标记比文本标记要多很多,因此所有专家都会在在任务中多少处理些图像。

只不过有的会主要处理图像,有的主要处理文本,或者二者兼具。

还有在大多数情况下,都会有一个专家来处理所有包含文本表示的图像patch。

图片

除了性能上的提升,使用稀疏化模型的好处还体现在降低计算成本上。

因为“多专家”的模式意味着,尽管多设了很多子模型,模型容量显著增加,但是实际计算成本并没有明显变化。

如果一次任务中只使用了一个子模型,那它的成本和标准Transformer的差不多。

比如LIMoE-H/14总共有5.6B参数,但是通过稀疏化,它只会使用每个token的675M参数。

One More Thing

稀疏化模型一直是谷歌深度研究的一个方向,已经提出了MoE、GLaM在内的多个模型。

这次LIMoE也不是谷歌第一次魔改MoE。

去年6月,他们提出了V-MoE,是一种新型的视觉架构,今年已将全部代码开源。

责任编辑:张燕妮 来源: 量子位
相关推荐

2023-10-30 15:06:00

模型数据

2021-10-25 09:06:29

模型人工智能计算

2021-07-24 10:19:14

AI 数据克隆

2010-05-14 09:02:03

云计算成本

2013-04-01 09:17:12

ARM通用计算性能

2022-05-23 14:55:40

云计算工具成本

2023-02-03 16:31:02

模型

2021-09-08 17:23:33

谷歌模型开发

2021-07-15 10:30:08

谷歌强化学习AI

2020-06-09 11:16:42

云计算云平台工具

2022-02-18 13:46:05

云计算混合云技巧

2022-07-17 13:07:26

模型开源

2024-06-25 09:35:04

模型训练

2022-08-08 09:47:09

AI算法模型

2021-10-21 15:20:35

智能自动化Science

2024-09-12 08:00:00

2024-09-12 12:46:36

2023-11-07 18:08:03

GPT-4模型

2024-03-15 15:15:31

模型训练

2021-05-08 13:36:13

云计算AWS云平台
点赞
收藏

51CTO技术栈公众号