Flink SQL 知其所以然:Over 聚合操作

数据库 其他数据库
在生产环境中,Over 聚合的使用场景还是比较少的。在 Hive 中也有相同的聚合,但是小伙伴萌可以想想你在离线数仓经常使用嘛?

架构

大家好,我是老羊,今天我们来学习 Flink SQL 中的· Over 聚合操作。

  • Over 聚合定义(支持 Batch\Streaming):可以理解为是一种特殊的滑动窗口聚合函数。

那这里我们拿 Over 聚合​ 与 窗口聚合 做一个对比,其之间的最大不同之处在于:

窗口聚合:不在 group by 中的字段,不能直接在 select 中拿到

Over 聚合:能够保留原始字段

注意:其实在生产环境中,Over 聚合的使用场景还是比较少的。在 Hive 中也有相同的聚合,但是小伙伴萌可以想想你在离线数仓经常使用嘛?

  • 应用场景:计算最近一段滑动窗口的聚合结果数据。
  • 际案例:查询每个产品最近一小时订单的金额总和:

SELECT order_id, order_time, amount,
  SUM(amount) OVER (
    PARTITION BY product
    ORDER BY order_time
    RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW
  ) AS one_hour_prod_amount_sum
FROM Orders
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.

Over 聚合的语法总结如下:

SELECT
  agg_func(agg_col) OVER (
    [PARTITION BY col1[, col2, ...]]
    ORDER BY time_col
    range_definition),
  ...
FROM ...
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

其中:

  • ORDER BY:必须是时间戳列(事件时间、处理时间)
  • PARTITION BY:标识了聚合窗口的聚合粒度,如上述案例是按照 product 进行聚合
  • range_definition:这个标识聚合窗口的聚合数据范围,在 Flink 中有两种指定数据范围的方式。第一种为按照行数聚合​,第二种为按照时间区间聚合。如下案例所示:

a. 时间区间聚合:

按照时间区间聚合就是时间区间的一个滑动窗口,比如下面案例 1 小时的区间,最新输出的一条数据的 sum 聚合结果就是最近一小时数据的 amount 之和。

CREATE TABLE source_table (
    order_id BIGINT,
    product BIGINT,
    amount BIGINT,
    order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),
    WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '1',
  'fields.order_id.min' = '1',
  'fields.order_id.max' = '2',
  'fields.amount.min' = '1',
  'fields.amount.max' = '10',
  'fields.product.min' = '1',
  'fields.product.max' = '2'
);

CREATE TABLE sink_table (
    product BIGINT,
    order_time TIMESTAMP(3),
    amount BIGINT,
    one_hour_prod_amount_sum BIGINT
) WITH (
  'connector' = 'print'
);

INSERT INTO sink_table
SELECT product, order_time, amount,
  SUM(amount) OVER (
    PARTITION BY product
    ORDER BY order_time
    -- 标识统计范围是一个 product 的最近 1 小时的数据
    RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW
  ) AS one_hour_prod_amount_sum
FROM source_table
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.

结果如下:

+I[2, 2021-12-24T22:08:26.583, 7, 73]
+I[2, 2021-12-24T22:08:27.583, 7, 80]
+I[2, 2021-12-24T22:08:28.583, 4, 84]
+I[2, 2021-12-24T22:08:29.584, 7, 91]
+I[2, 2021-12-24T22:08:30.583, 8, 99]
+I[1, 2021-12-24T22:08:31.583, 9, 138]
+I[2, 2021-12-24T22:08:32.584, 6, 105]
+I[1, 2021-12-24T22:08:33.584, 7, 145]
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.

b.  行数聚合:

按照行数聚合就是数据行数的一个滑动窗口,比如下面案例,最新输出的一条数据的 sum 聚合结果就是最近 5 行数据的 amount 之和。

CREATE TABLE source_table (
    order_id BIGINT,
    product BIGINT,
    amount BIGINT,
    order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),
    WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '1',
  'fields.order_id.min' = '1',
  'fields.order_id.max' = '2',
  'fields.amount.min' = '1',
  'fields.amount.max' = '2',
  'fields.product.min' = '1',
  'fields.product.max' = '2'
);

CREATE TABLE sink_table (
    product BIGINT,
    order_time TIMESTAMP(3),
    amount BIGINT,
    one_hour_prod_amount_sum BIGINT
) WITH (
  'connector' = 'print'
);

INSERT INTO sink_table
SELECT product, order_time, amount,
  SUM(amount) OVER (
    PARTITION BY product
    ORDER BY order_time
    -- 标识统计范围是一个 product 的最近 5 行数据
    ROWS BETWEEN 5 PRECEDING AND CURRENT ROW
  ) AS one_hour_prod_amount_sum
FROM source_table
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.

预跑结果如下:

+I[2, 2021-12-24T22:18:19.147, 1, 9]
+I[1, 2021-12-24T22:18:20.147, 2, 11]
+I[1, 2021-12-24T22:18:21.147, 2, 12]
+I[1, 2021-12-24T22:18:22.147, 2, 12]
+I[1, 2021-12-24T22:18:23.148, 2, 12]
+I[1, 2021-12-24T22:18:24.147, 1, 11]
+I[1, 2021-12-24T22:18:25.146, 1, 10]
+I[1, 2021-12-24T22:18:26.147, 1, 9]
+I[2, 2021-12-24T22:18:27.145, 2, 11]
+I[2, 2021-12-24T22:18:28.148, 1, 10]
+I[2, 2021-12-24T22:18:29.145, 2, 10]
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.

当然,如果你在一个 SELECT 中有多个聚合窗口的聚合方式,Flink SQL 支持了一种简化写法,如下案例:

SELECT order_id, order_time, amount,
  SUM(amount) OVER w AS sum_amount,
  AVG(amount) OVER w AS avg_amount
FROM Orders
-- 使用下面子句,定义 Over Window
WINDOW w AS (
  PARTITION BY product
  ORDER BY order_time
  RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

责任编辑:武晓燕 来源: 大数据羊说
相关推荐

2022-06-06 09:27:23

FlinkSQLGroup

2022-07-05 09:03:05

Flink SQLTopN

2022-05-22 10:02:32

CREATESQL 查询SQL DDL

2022-06-29 09:01:38

FlinkSQL时间属性

2022-05-18 09:02:28

Flink SQLSQL字符串

2022-05-15 09:57:59

Flink SQL时间语义

2022-05-27 09:02:58

SQLHive语义

2021-12-09 06:59:24

FlinkSQL 开发

2022-06-18 09:26:00

Flink SQLJoin 操作

2022-05-12 09:02:47

Flink SQL数据类型

2021-11-28 11:36:08

SQL Flink Join

2021-11-27 09:03:26

flink join数仓

2022-08-10 10:05:29

FlinkSQL

2021-09-12 07:01:07

Flink SQL ETL datastream

2021-12-17 07:54:16

Flink SQLTable DataStream

2022-07-12 09:02:18

Flink SQL去重

2021-12-06 07:15:47

开发Flink SQL

2022-05-09 09:03:04

SQL数据流数据

2021-11-24 08:17:21

Flink SQLCumulate WiSQL

2021-12-13 07:57:47

Flink SQL Flink Hive Udf
点赞
收藏

51CTO技术栈公众号