视频也可以用扩散模型来生成了,效果很能打:新SOTA已达成

人工智能 新闻
为了让生成视频更长、分辨率更高,作者在这个扩散模型中引入了一种全新的采样方法。

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

​扩散模型最近是真的有点火。

前有OpenAI用它打败霸榜多年的GAN,现在谷歌又紧随其后,提出了一个视频扩散模型

和图像生成一样,初次尝试,它居然就表现出了不俗的性能。

比如输入“fireworks”,就能生成这样的效果:

满屏烟花盛放,肉眼看上去简直可以说是以假乱真了。

为了让生成视频更长、分辨率更高,作者还在这个扩散模型中引入了一种全新的采样方法。

最终,该模型在无条件视频生成任务中达到全新SOTA

一起来看。

由图像扩散模型扩展而成

这个扩散视频模型,由标准的图像扩散模型UNet扩展而成。

UNet是一种神经网络架构,分为空间下采样通道和上采样通道,通过残差连接。

该网络由多层2D卷积残差块构建而成,每个卷积块后面跟着一个空间注意块。

通过固定帧数的块,以及在空间和时间上分解的3D U-Net,就可以将它扩展为视频模型。

具体来说:

先将每个二维卷积更改为三维卷积(space-only),比如将3x3卷积更改为1x3x3卷积(第一轴(axis)索引视频帧,第二轴和第三轴索引空间高度和宽度)

每个空间注意块中的注意力仍然专注于空间维度。

然后,在每个空间注意块之后,插入一个时间注意块;该时间注意块在第一个轴上执行注意力,并将空间轴视为批处理轴(batch axes)

众所周知,像这样在视频Transformer中分对时空注意力进行分解,会让计算效率更高。

由此一来,也就能在视频和图像上对模型进行联合训练,而这种联合训练对提高样本质量很有帮助。

此外,为了生成更长和更高分辨率的视频,作者还引入了一种新的调整技术:梯度法。

它主要修改模型的采样过程,使用基于梯度的优化来改善去噪数据的条件损失,将模型自回归扩展到更多的时间步(timestep)和更高的分辨率。

评估无条件和文本条件下的生成效果

对于无条件视频生成,训练和评估在现有基准上进行。

该模型最终获得了最高的FID分数和IS分数,大大超越了此前的SOTA模型。

对于文本条件下的视频生成,作者在1000万个字幕视频的数据集上进行了训练,空间分辨率为64x64px;

在此之前,视频生成模型采用的都是各种GAN、VAE,以及基于流的模型以及自回归模型。

所以这也是他们首次报告扩散模型根据文本生成视频的结果。

下图则显示了无分类器引导对该模型生成质量的影响:与其他非扩散模型一致,添加引导会增加每个单独图像的保真度(右为该视频扩散模型,可以看到它的图片更加真实和清晰)

△ 图片为随机截取的视频帧

最后,作者也验证发现,他们所提出的梯度法在生成长视频时,确实比此前的方法更具多样性,也就更能保证生成的样本与文本达成一致。

△ 右为梯度法

论文地址:https://arxiv.org/abs/2204.03458

项目主页:https://video-diffusion.github.io/

责任编辑:张燕妮 来源: 量子位
相关推荐

2022-05-26 13:57:00

AI数据库SOTA

2022-12-19 14:46:53

视频方法

2009-07-29 08:11:57

雅虎微软合作wangluo

2021-12-30 10:11:38

模型人工智能深度学习

2023-06-27 09:53:11

论文AI

2019-12-01 16:05:00

NvidiaInter英特尔

2020-09-15 15:45:38

Visual Stud数据IDE

2024-06-12 11:54:21

2015-09-29 14:31:06

安装量目标Windows 10

2023-12-29 13:18:23

模型NeRFTICD

2022-12-25 12:57:00

模型自然学习

2023-10-16 12:31:17

人工智能数据

2024-02-26 08:25:00

模型训练

2024-05-10 07:58:03

2024-03-27 10:20:31

模型场景

2024-08-26 09:35:00

模型文生图

2023-12-20 14:54:29

谷歌Gen-2视频

2021-08-13 15:07:02

模型人工智能深度学习

2009-02-04 08:52:55

动态页面XMLXSL

2021-07-19 18:00:50

ZoomFive9收购
点赞
收藏

51CTO技术栈公众号