盘二叉树,建议从这些基础搞起……

开发 前端
如果二叉树中除去最后一层节点为满二叉树,且最后一层的节点依次从左到右分布,则此二叉树称为完全二叉树。

一、基础

二叉树是每个节点最多有两个子树的树结构,其具有如下性质:

  1. 二叉树中,第 i 层最多有 2^(i-1) 个结点。
  2. 如果二叉树的深度为 K,那么此二叉树最多有 2K-1 个结点。
  3. 对任何一棵二叉树,如果其叶子结点(度为0)数为m, 度为2的结点数为n, 则m = n + 1。

二、二叉树分类

满二叉树

如果二叉树中除了叶子节点,每个节点的度都为2,则此二叉树称为满二叉树。

满二叉树示意图

完全二叉树

如果二叉树中除去最后一层节点为满二叉树,且最后一层的节点依次从左到右分布,则此二叉树称为完全二叉树。

完全二叉树示意图

搜索二叉树

如果一棵树不为空,并且如果它的根节点左子树不为空,那么它左子树上面的所有节点的值都小于它的根节点的值,如果它的右子树不为空,那么它右子树任意节点的值都大于它的根节点的值,且左右子树也是二叉搜索树。

平衡二叉树

平衡二叉树又称为AVL树,是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

三、二叉树遍历

为了实现二叉树遍历,首先需要的有一颗二叉树,下面先设计一个简单的二叉树,如下所示:

// js版本
const binaryTree = {
val: 10,
left: {
val: 8,
right: {
val: 9
}
},
right: {
val: 15
}
};

(1)先序遍历

二叉树的先序遍历是按照“根节点——左节点——右节点”的顺序遍历这颗二叉树,具体实现如下所示:

// 递归版本
function preOrderTraverse(head) {
if (head == null) {
return;
}
console.log(head.val);
preOrderTraverse(head.left);
preOrderTraverse(head.right);
}
// 对于先序遍历的非递归版,准备一个栈,然后将头压入栈中,循环弹出一个值,有右孩子的先压右孩子,再压左孩子
function preOrderTraverseUnRecur(head) {
if (head == null) {
return;
}
const stack = [];
stack.push(head);
while (stack.length > 0) {
head = stack.pop();
console.log(head.val);
if (head.right != null) {
stack.push(head.right);
}
if (head.left != null) {
stack.push(head.left);
}
}
}

(2)中序遍历

二叉树的中序遍历是按照“左节点——根节点——右节点”的顺序遍历这颗二叉树,具体实现如下所示:

// 递归版本
function inOrderTraverse(head) {
if (head == null) {
return;
}
inOrderTraverse(head.left);
console.log(head.val);
inOrderTraverse(head.right);
}
/**
* 非递归版本实现
* 准备一个栈
* 先将左节点全压入栈中
* 当前节点为空,则从栈中拿一个打印,当前节点往右跑
*/
function inOrderTraverseUnRecur(head) {
if (head == null) {
return;
}
const stack = [];
while (stack.length > 0 || head != null) {
if (head != null) {
stack.push(head);
head = head.left;
} else {
head = stack.pop();
console.log(head.val);
head = head.right;
}
}
}

(3) 后续遍历

二叉树的后序遍历是按照“左节点——右节点——根节点”的顺序遍历这颗二叉树,具体实现如下所示:

// 递归版本
function posOrderTraverse(head) {
if (head == null) {
return;
}
posOrderTraverse(head.left);
posOrderTraverse(head.right);
console.log(head.val);
}
// 对于后续遍历的非递归版,后续左-右-根,但我们可以根据根-右-左,然后将其存入一个栈中,弹出就是左-右-根
function posOrderTraverseUnRecur(head) {
if (head == null) {
return;
}
const stack = [];
const stack1 = [];
stack.push(head);
while (stack.length > 0) {
head = stack.pop();
stack1.push(head.val);
if (head.left != null) {
stack.push(head.left);
}

if (head.right != null) {
stack.push(head.right);
}
}
while (stack1.length > 0) {
console.log(stack1.pop());
}
}

(4) DFS(深度优先遍历)

深度优先遍历主要思路是从根节点开始,沿着一条路一直走到底,然后从这条路尽头的节点回退到上一个节点,再从另一条路开始走到底,不断递归重复,直到所有的顶点都遍历完。对于二叉树的深度优先就是二叉树的先序遍历。

function DFS1(head) {
if (head == null) {
return;
}
console.log(head.val);
DFS1(head.left);
DFS1(head.right);
}

// 对于二叉树的深度优先就是二叉树的先序遍历,用一个栈实现
function DFS2(head) {
if (head == null) {
return;
}
const stack = [head];
while (stack.length > 0) {
head = stack.pop();
console.log(head.val);
if (head.right != null) {
stack.push(head.right);
}
if (head.left != null) {
stack.push(head.left);
}
}
}

(5) BFS(广度优先遍历)

广度优先遍历指的是一层一层的遍历树的内容,可利用队列来实现。

function BFS(head) {
if (head == null) {
return;
}
const list = [head];
while (list.length > 0) {
head = list.shift();
console.log(head.val);
if (head.left != null) {
list.push(head.left);
}
if (head.right != null) {
list.push(head.right);
}
}
}
责任编辑:姜华 来源: 前端点线面
相关推荐

2020-04-27 07:05:58

二叉树左子树右子树

2021-07-13 14:03:24

二叉树满二叉树完全二叉树

2021-04-19 07:47:42

数据结构二叉树Tree

2021-04-20 08:37:14

数据结构二叉树

2021-03-17 08:19:22

二叉树LeetCode

2013-07-15 16:35:55

二叉树迭代器

2021-09-29 10:19:00

算法平衡二叉树

2020-09-23 18:25:40

算法二叉树多叉树

2021-04-28 20:12:27

数据结构创建

2022-10-26 23:58:02

二叉树数组算法

2021-05-06 17:46:30

二叉树数据结构

2023-05-08 15:57:16

二叉树数据结构

2021-03-22 08:23:29

LeetCode二叉树节点

2021-08-27 11:36:44

二叉树回溯节点

2018-03-15 08:31:57

二叉树存储结构

2021-12-17 14:26:58

二叉树节点数量

2021-09-15 07:56:32

二叉树层次遍历

2021-10-12 09:25:11

二叉树树形结构

2021-11-29 10:40:58

二叉树镜像节点

2020-12-30 08:35:34

贪心算法监控
点赞
收藏

51CTO技术栈公众号