Hive 内置的 Json 解析函数

数据库 其他数据库
在数据预处理层需要将 json 串进行“拍平”处理,所谓“拍平”是指将 json 中的 key 转换为表的列字段,其 key 对应的 value 值则为列字段对应的值。

背景

在大数据 ETL(Extract-Transfer-Load) 过程中,经常需要从不同的数据源来提取数据进行加工处理,比较常见的是从 Mysql 数据库来提取数据,而 Mysql 数据库中数据存储的比较常见方式是使用 json 串进行存储。

通过大数据加工处理出来的数据是需要具有可直观分析的特点,可从数据分析中挖掘出商业价值的。

因此在数据预处理层需要将 json 串进行“拍平”处理,所谓“拍平”是指将 json 中的 key 转换为表的列字段,其 key 对应的 value 值则为列字段对应的值。

“拍平”的处理行业内也可称为“行转列”处理,我举个例子你就能明白什么是行转列了。

举例:

user表字段如下:

现需要将 user 表中字段 detail_info 中的 json 串值,以每个 key 作为 user_detail_info 表的字段来进行存储。

实现的 user_detail_info 表字段如下:

从 user 表到 user_detail_info 表的转换,就是“行转列”的过程。

你是否会好奇,在 Hive 中这个过程是如何实现的呢?

下文会解答你的疑惑。

Hive内置的json解析函数:get_json_object

语法:

get_json_object(json_string, '$.column')

说明:

解析 json 的字符串 json_string, 返回 path 指定的内容。如果输入的 json 字符串无效,结果返回 NULL。

这个函数每次只能返回一个数据项。

举例:

test_data = '{"name": "zhangsan",
"age": 18,
"preference": "music"}'

查询sql语句:

select get_json_object(test_data,'$.preference');

解析结果:

如果需要同时解析 age, preference 这两个字段。

sql语句如下:

select get_json_object(test_data,'$.age'),get_json_object(test_data,'$.preference');

执行结果如下:

如果需要同时解析的字段很多,很显然使用这种方式写就比较麻烦了,这时候 json_tuple 这个函数是个更好的选择。

Hive内置的json解析函数:json_tuple

语法:

json_tuple(json_string, column1, column2, column3 ...)

说明:

解析 json 的字符串 json_string,可同时指定多个 json 数据中的 column,返回对应的 value。如果输入的 json 字符串无效,结果返回 NULL。

举例:

例如:test_table1 表的 data 字段存储的是以下 json 串信息,现在想要获取这个 json 串的每个 key 并将其对应的 value 值查询出来。

(1). 准备 test_table1 表 data 字段的 json 数据

data = '{
"name": "rocky",
"age": 20,
"prefer": "dance",
"height": 1.8,
"nation": "China"
}'

(2). sql查询语句

select t1.name,
t1.age,
t1.prefer,
t1.height,
t1.nation
from (select data
from test_table1
) t0
lateral view json_tuple(t0.data,
'name',
'age',
'prefer',
'height',
'nation'
) t1 as name,age,prefer,height,nation;

解析结果:

  • get_json_object函数 & json_tuple函数。
  • get_json_object 函数的使用语法中,使用到$.加上 json 的 key。
  • json_tuple 函数的使用语法中,不能使用$.加上 json 的 key,如果使用则会导致解析失败。
  • json_tuple 函数与 get_json_object 函数对比,可以发现 json_tuple 函数的优点是一次可以解析多个 json 字段。
  • 但是如果被要求解析的 json 是一个 json 数组,那么这两个函数都无法完成解析。
责任编辑:姜华 来源: 今日头条
相关推荐

2022-03-31 07:32:33

Hivejson解析函数

2023-05-06 07:15:59

Hive内置函数工具

2021-04-28 07:22:13

HiveJson数组

2019-07-17 10:19:36

MySQL数据库SQL

2025-01-06 12:00:00

Python函数内置函数

2016-09-18 17:24:58

php函数json_encodeunicode

2010-05-11 11:29:11

Unix awk

2010-09-14 17:27:27

SQL函数

2009-02-24 16:17:41

日期时间函数

2023-12-22 15:44:43

2020-06-24 07:44:12

Python数据技术

2021-05-28 08:52:45

Hive分析函数

2021-06-09 07:32:18

C++内置函数函数传参

2024-05-20 13:02:30

Python编程开发

2010-01-06 14:24:40

Javascript解

2011-03-04 14:58:40

jqueryJSON

2023-04-09 23:09:59

Go语言函数

2024-04-29 14:58:48

Python内置函数

2010-07-19 11:17:28

SQL Server

2021-06-05 21:29:53

数据库MySQL函数
点赞
收藏

51CTO技术栈公众号