一张照片就能生成3D模型,GAN和自动编码器碰撞出奇迹

人工智能 新闻
这只名叫Pix2NeRF的AI,连训练用的数据集都有点“与众不同”,可以在没有3D数据、多视角或相机参数的情况下学会生成新视角。

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

2D图片“脑补”3D模型,这次真的只用一张图就行了——

只需要给AI随便喂一张照片,它就能从不一样的角度给你生成“新视图”:

不仅能搞定360°的椅子和汽车,连人脸也玩出了新花样,从“死亡自拍”角度到仰视图都能生成:

更有意思的是,这只名叫Pix2NeRF的AI,连训练用的数据集都有点“与众不同”,可以在没有3D数据、多视角或相机参数的情况下学会生成新视角。

可以说是又把NeRF系列的AI们卷上了一个新高度。

用GAN+自动编码器学会“脑补”

在此之前,NeRF能通过多视图训练AI模型,来让它学会生成新视角下的3D物体照片。

然而,这也导致一系列采用NeRF方法的模型,包括PixelNeRF和GRF,都需要利用多视图数据集才能训练出比较好的2D生成3D模型效果。

而多视图数据集往往有限,训练时间也比较长。

因此,作者们想出了一个新方法,也就是用自动编码器来提取物体姿态和形状特征,再用GAN直接生成全新的视角图片。

Pix2NeRF包含三种类型的网络架构,即生成网络G,判别网络D和编码器E。

其中,生成网络G和判别网络D组成生成对抗网络GAN,而编码器E和生成网络G用于构成自动编码器

首先,自动编码器可以通过无监督学习,来获取输入图像的隐藏特征,包括物体姿态和物体形状,并利用学习到的特征重建出原始的数据;

然后,再利用GAN来通过姿态和形状数据,重构出与原来的物体形状不同的新视图。

这里研究人员采用了一种叫做π-GAN的结构,生成3D视角照片的效果相比其他类型的GAN更好(作者们还对比了采用HoloGAN的一篇论文):

那么,这样“混搭”出来的AI模型,效果究竟如何?

用糊图也能生成新视角

作者们先是进行了一系列的消融实验,以验证不同的训练方法和模型架构,是否真能提升Pix2NeRF的效果。

例如,针对模型去掉GAN逆映射、自动编码器,或不采用warmup针对学习率进行预热等,再尝试生成新视角的人脸:

其中,GAN逆映射(inversion)的目的是将给定的图像反转回预先训练的GAN模型的潜在空间中,以便生成器从反转代码中重建图像。

实验显示,除了完整模型(full model)以外,去掉各种方法的模型,生成人脸的效果都不够好。

随后,作者们又将生成照片的效果与其他生成新视图的AI模型进行了对比。

结果表明,虽然Pix2NeRF在ShapeNet-SRN的生成效果上没有PixelNeRF好,但效果也比较接近:

而在CelebA和CARLA数据集上,Pix2NeRF基本都取得了最好的效果。

而且模型还自带一些“美颜”功能,即使是糊图送进去,也能给GAN出更丝滑的轮廓:

整体而言,除了人脸能生成不同角度的新视图以外,物体还能脑补出360°下不同姿态的效果:

看来,AI也和人类一样,学会“脑补”没见过的物体形状了。

作者介绍

这次论文的作者均来自苏黎世联邦理工学院(ETH)。

论文一作Shengqu Cai,ETH硕士研究生,本科毕业于伦敦国王学院,研究方向是神经渲染、生成模型和无监督学习等,高中毕业于辽宁省实验中学。

Anton Obukhov,ETH博士生,此前曾在英伟达等公司工作,研究方向是计算机视觉和机器学习。

Dengxin Dai,马普所高级研究员和ETH(外部)讲师,研究方向是自动驾驶、传感器融合和有限监督下的目标检测。

Luc Van Gool,ETH计算机视觉教授,谷歌学术上的引用量达到15w+,研究方向主要是2D和3D物体识别、机器人视觉和光流等。

目前这项研究的代码还在准备中。

感兴趣的小伙伴可以蹲一波了~

论文地址:

https://arxiv.org/abs/2202.13162

项目地址:

https://github.com/sxyu/pixel-nerf

责任编辑:张燕妮 来源: 量子位
相关推荐

2017-09-24 12:13:52

深度学习自动编码器机器学习

2024-07-16 12:02:11

2019-06-23 17:30:07

AI 数据人工智能

2022-01-05 11:10:34

神经网络AI算法

2019-11-21 08:57:31

GPS信息定位

2019-05-22 17:34:16

代码开发工具

2021-12-17 10:09:47

编码器语言模型DeepMind

2021-02-02 10:39:15

AI人脸识别3D人脸

2023-12-05 13:49:00

AI模型

2022-05-16 13:46:22

2D3D,AI

2022-02-14 10:16:29

AI模型编码

2020-01-21 21:20:00

人脸识别人工智能数据

2018-06-13 13:25:01

2023-12-03 08:40:18

微软模型

2017-07-10 13:45:33

自动编码数据生成GAN

2017-11-10 12:45:16

TensorFlowPython神经网络

2023-12-22 09:29:07

模型3D

2017-08-16 21:58:05

自动编码器DeepCoder深度学习

2024-07-04 09:26:16

2024-12-31 07:15:00

点赞
收藏

51CTO技术栈公众号