Python大数据为啥一定要用Numpy Array?

开发 后端
Python的核心库提供了 List 列表。列表是最常见的Python数据类型之一,它可以调整大小并且包含不同类型的元素,非常方便。

Numpy 是Python科学计算的一个核心模块。它提供了非常高效的数组对象,以及用于处理这些数组对象的工具。一个Numpy数组由许多值组成,所有值的类型是相同的。

Python的核心库提供了 List 列表。列表是最常见的Python数据类型之一,它可以调整大小并且包含不同类型的元素,非常方便。

那么List和Numpy Array到底有什么区别?为什么我们需要在大数据处理的时候使用Numpy Array?答案是性能。

Numpy数据结构在以下方面表现更好:

1.内存大小—Numpy数据结构占用的内存更小。

2.性能—Numpy底层是用C语言实现的,比列表更快。

3.运算方法—内置优化了代数运算等方法。

下面分别讲解在大数据处理时,Numpy数组相对于List的优势。

1.内存占用更小

适当地使用Numpy数组替代List,你能让你的内存占用降低20倍。

对于Python原生的List列表,由于每次新增对象,都需要8个字节来引用新对象,新的对象本身占28个字节(以整数为例)。所以列表 list 的大小可以用以下公式计算:

64 + 8 * len(lst) + len(lst) * 28 字节

而使用Numpy,就能减少非常多的空间占用。比如长度为n的Numpy整形Array,它需要:

96 + len(a) * 8 字节

可见,数组越大,你节省的内存空间越多。假设你的数组有10亿个元素,那么这个内存占用大小的差距会是GB级别的。

2.速度更快、内置计算方法

运行下面这个脚本,同样是生成某个维度的两个数组并相加,你就能看到原生List和Numpy Array的性能差距。

import time
import numpy as np
size_of_vec = 1000
def pure_python_version():
t1 = time.time()
X = range(size_of_vec)
Y = range(size_of_vec)
Z = [X[i] + Y[i] for i in range(len(X)) ]
return time.time() - t1
def numpy_version():
t1 = time.time()
X = np.arange(size_of_vec)
Y = np.arange(size_of_vec)
Z = X + Y
return time.time() - t1
t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)
print("Numpy is in this example " + str(t1/t2) + " faster!")

结果如下:

0.00048732757568359375 0.0002491474151611328
Numpy is in this example 1.955980861244019 faster!

可以看到,Numpy比原生数组快1.95倍。

如果你细心的话,还能发现,Numpy array可以直接执行加法操作。而原生的数组是做不到这点的,这就是Numpy 运算方法的优势。

我们再做几次重复试验,以证明这个性能优势是持久性的。

import numpy as np
from timeit import Timer
size_of_vec = 1000
X_list = range(size_of_vec)
Y_list = range(size_of_vec)
X = np.arange(size_of_vec)
Y = np.arange(size_of_vec)
def pure_python_version():
Z = [X_list[i] + Y_list[i] for i in range(len(X_list)) ]
def numpy_version():
Z = X + Y
timer_obj1 = Timer("pure_python_version()",
"from __main__ import pure_python_version")
timer_obj2 = Timer("numpy_version()",
"from __main__ import numpy_version")
print(timer_obj1.timeit(10))
print(timer_obj2.timeit(10)) # Runs Faster!
print(timer_obj1.repeat(repeat=3, number=10))
print(timer_obj2.repeat(repeat=3, number=10)) # repeat to prove it!

结果如下:

0.0029753120616078377
0.00014940369874238968
[0.002683573868125677, 0.002754641231149435, 0.002803879790008068]
[6.536301225423813e-05, 2.9387418180704117e-05, 2.9171351343393326e-05]

可以看到,第二个输出的时间总是小得多,这就证明了这个性能优势是具有持久性的。

所以,如果你在做一些大数据研究,比如金融数据、股票数据的研究,使用Numpy能够节省你不少内存空间,并拥有更强大的性能。

参考文献:​​https://webcourses.ucf.edu/courses/1249560/pages/python-lists-vs-numpy-arrays-what-is-the-difference​

我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,请持续关注我们。

责任编辑:庞桂玉 来源: 菜鸟学Python
相关推荐

2021-03-29 22:58:34

大数据Java编程语言

2018-08-24 09:02:26

2019-01-29 11:02:30

消息中间件Java互联网

2016-08-12 22:27:32

大数据小趋势

2022-03-21 07:40:08

线程池Executors方式

2022-05-30 07:36:07

Python脚本函数

2019-02-14 09:35:15

面试MQ中间件

2010-11-19 16:02:42

IT族

2021-10-29 06:56:15

Python脚本解释器

2023-01-09 08:38:22

大数据架构师YARN

2019-09-19 15:12:27

Spring策略框架

2018-09-04 15:10:40

2022-07-14 15:08:23

AI模型

2021-03-05 11:02:14

iOS 14.5苹果更新

2018-04-16 09:31:17

2011-11-09 14:54:50

Linux操作系统

2022-08-31 22:50:13

JavaScript函数JSON

2019-04-22 10:53:18

2022-06-13 09:26:41

Promise前端代码

2011-05-10 15:51:34

SEO
点赞
收藏

51CTO技术栈公众号