HarmonyOS自定义JS组件—灵动的锦鲤

原创
系统 OpenHarmony
今天给大家带来如何用纯JS代码的Canvas绘制一条游动的锦鲤.

​想了解更多内容,请访问:​

​51CTO和华为官方合作共建的鸿蒙技术社区​

​https://harmonyos.51cto.com​

简介

今天给大家带来如何用纯JS代码的Canvas绘制一条游动的锦鲤

先看下效果图

实现思路

拆分

先看设计图,我们的小鱼由头、鳍、身体、节肢、尾部五部分组成。

下面给出每个部位的实现api

  • 头是一个实心圆,可以通过canvas.arc()
  • 鱼鳍则由一条直线和曲线构成,会用到path,曲线可以使用贝塞尔曲线canvas.quadraticCurveTo()。
  • 身体由两条直线和曲线构成,曲线也选用贝塞尔曲线,通过控制点可以控制小鱼胖瘦
  • 节肢1由两个实心圆和一个梯形构成。梯形可以看出四条封闭的线段构成。
  • 节肢2由一个梯形和一个圆,方案同上
  • 尾由两个三角形,也是封闭线段

参数

基准尺寸参数

首先我们定一个基准尺寸参数来控制小鱼的大小,这里我们选取鱼头的半径R

其他参数如下:

小鱼身长设为:3.2R
节肢1大圆的半径设为:0.7R
节肢1中圆的半径设为:0.7*0.6R=0.42R
节肢1梯形高度设为:(0.7+0.42)R=1.12R
节肢2小圆的半径设为:0.4*0.42R=0.168R
节肢2梯形高度设为:0.42*(0.4+2.7)R=1.302R
小鱼的总长度:R+3.2R+1.12R+0.168R+1.302R=6.79R
画布的长宽:2*(6.79R-R-1.6R)=2*4.19R=8.38R

小鱼的整体尺寸如下:

值得注意的是,画布的长度并不等于小鱼的长度,因为小鱼的重心并不位于鱼长中心,而是小鱼身的中心点,但是小鱼的转身却要围绕它,因此我们画布的半径需要拓展成小鱼身中心到小鱼尾的长度,整个画布的大小=4.19R*4.19R,如下

基准旋转参数

为了使我们的小鱼能够左右掉头,这里就需要一个旋转角度,我们选取fishMainAngle作为主角度。

实现步骤

自定义一个Canvas的组件

<canvas ref="fishcanvas" id="fishcanvas"></canvas>

持有绘图相关的上下文

onAttached() {
setTimeout(() => { //这里需要延迟得到canvas
this.canvas = this.$refs.fishcanvas.getContext('2d', {antialias: true});
this.onDraw()
},200)
}

这里我们延迟200ms,在js中获取hml定义的fishcanvas组件,再拿到context并持有。接着执行onDraw进行绘制

定义绘制方法

onDraw() {
//清除画布
this.clearCanvas()
//绘制小鱼头
this.drawHead(this.canvas,fishAngle)
//绘制左右小鱼鳍
this.drawFins(this.canvas, leftFinsPoint, this.FIND_FINS_LENGTH, fishAngle, false);
this.drawFins(this.canvas, rightFinsPoint, this.FIND_FINS_LENGTH, fishAngle, true);
//绘制节肢1
let middleCircleCenterPoint = this.drawSegment(this.canvas, bodyBottomCenterPoint,
this.BIG_CIRCLE_RADIUS,
this.MIDDLE_CIRCLE_RADIUS,
this.FIND_MIDDLE_CIRCLE_LENGTH, fishAngle, true);
//绘制节肢2
this.drawSegment(this.canvas, middleCircleCenterPoint, this.MIDDLE_CIRCLE_RADIUS, this.SMALL_CIRCLE_RADIUS,
this.FIND_SMALL_CIRCLE_LENGTH, fishAngle, false);
let findEdgeLength = Math.abs(Math.sin(MathUtils.toRadians(this.currentValue * 1.5)) * this.BIG_CIRCLE_RADIUS);
// 绘制小鱼尾大小三角形
this.drawTriangle(this.canvas, middleCircleCenterPoint, this.FIND_TRIANGLE_LENGTH, findEdgeLength, fishAngle);
let findEdgeLengthS = Math.abs(Math.sin(MathUtils.toRadians(this.currentValue * 1.5 - 90)) * this.BIG_CIRCLE_RADIUS);
this.drawTriangle(this.canvas,middleCircleCenterPoint,this.FIND_TRIANGLE_LENGTH*0.8,findEdgeLengthS*0.8,fishAngle);
// 绘制小鱼身
this.drawBody(this.canvas, this.headPoint, bodyBottomCenterPoint, fishAngle)
},

下面分步骤说明

清除画布

每次绘制前我们都需要将画布擦除,不然会污染后续绘制

this.canvas.clearRect(0, 0, this.width(), this.height());

绘制小鱼头

绘制小鱼头,需要小鱼头中心坐标,小鱼头半径。小鱼头中心坐标可由重心坐标middlePoint、距离、当前角度推算出来。

drawHead(canvas,fishAngle) {
canvas.fillStyle = 'rgba(244, 92,71,0.5)'
drawCircle(canvas, this.headPoint, this.HEAD_RADIUS)
//绘制小鱼眼
this.drawEye(canvas,fishAngle)
},

注意画布坐标轴是原则在左上角,x轴向右,y轴向下

绘制小鱼眼,小鱼眼由两个椭圆实现,使用canvas.ellipse()绘制

drawEye(canvas, fishAngle) {
canvas.fillStyle = 'rgba(0, 0,0,1)'
//左眼
canvas.beginPath();
let leftEye = MathUtils.calculatePoint(this.headPoint, this.HEAD_RADIUS * 0.7, fishAngle + 45)
canvas.ellipse(leftEye.x, leftEye.y,
this.HEAD_RADIUS * 0.12, this.HEAD_RADIUS * 0.07, -Math.PI * 0.3,
Math.PI * 0, Math.PI * 2, 1
);
canvas.fill();
//右眼
canvas.beginPath()
let rightEye = MathUtils.calculatePoint(this.headPoint, this.HEAD_RADIUS * 0.7, fishAngle - 45)
canvas.ellipse(rightEye.x, rightEye.y,
this.HEAD_RADIUS * 0.12, this.HEAD_RADIUS * 0.07, Math.PI * 0.3,
Math.PI * 0, Math.PI * 2, 1
);
canvas.fill();
}

绘制小鱼鳍

利用startPoint,controlPoint,endPoint绘制贝塞尔的封闭path

drawFins(canvas, startPoint, length, fishAngle, isRightFins) {
canvas.fillStyle = 'rgba(244, 92,71,0.5)'
let controlAngle = 115;
// 结束点
let endPoint = MathUtils.calculatePoint(startPoint, length, fishAngle - 180);
// 控制点
let controlPoint = MathUtils.calculatePoint(startPoint, 1.8 * length,
isRightFins ? fishAngle - controlAngle : fishAngle + controlAngle
);
drawPath(canvas, ['M', startPoint, 'Q', controlPoint, endPoint])
},

 

绘制节肢

节肢由圆、梯形构成,先绘制圆再讲梯形绘制上

/**
* 画节肢
*
* @param bottomCenterPoint 梯形底部的中心点坐标(长边)
* @param bigRadius 大圆的半径
* @param smallRadius 小圆的半径
* @param findSmallCircleLength 寻找梯形小圆的线长
* @param isBigCircle 是否有大圆
*/
drawSegment(canvas, bottomCenterPoint, bigRadius,
smallRadius, findSmallCircleLength, fishAngle,
isBigCircle) {
canvas.fillStyle = this.defaultFillStyle
// 节肢摆动的角度
let segmentAngle = 0;
// 节肢1 用 cos
if (isBigCircle) {
segmentAngle = (fishAngle + Math.cos(MathUtils.toRadians(this.currentValue * 1.5)) * 15);
} else {
segmentAngle = (fishAngle + Math.sin(MathUtils.toRadians(this.currentValue * 1.5)) * 35);
}
segmentAngle = fishAngle +this.currentValue
// 梯形上底的中心点(短边)
let upperCenterPoint = MathUtils.calculatePoint(bottomCenterPoint, findSmallCircleLength, segmentAngle - 180);
// 梯形的四个顶点
let bottomLeftPoint = MathUtils.calculatePoint(bottomCenterPoint, bigRadius, segmentAngle + 90);
let bottomRightPoint = MathUtils.calculatePoint(bottomCenterPoint, bigRadius, segmentAngle - 90);
let upperLeftPoint = MathUtils.calculatePoint(upperCenterPoint, smallRadius, segmentAngle + 90);
let upperRightPoint = MathUtils.calculatePoint(upperCenterPoint, smallRadius, segmentAngle - 90);

if (isBigCircle) {
// 绘制大圆
drawCircle(canvas, bottomCenterPoint, bigRadius);
}
// 绘制小圆
drawCircle(canvas, upperCenterPoint, smallRadius);

// 绘制梯形
drawPath(canvas, ['M', bottomLeftPoint, 'L', upperLeftPoint, 'L', upperRightPoint, 'L', bottomRightPoint])
return upperCenterPoint;
},

绘制小鱼尾大小三角形

drawTriangle(canvas, startPoint, findCenterLength, findEdgeLength, fishAngle) {
canvas.fillStyle = 'rgba(244, 92,71,0.5)'
// 三角形小鱼尾的摆动角度需要跟着节肢2走
let triangleAngle = (fishAngle + Math.sin(MathUtils.toRadians(this.currentValue * 1.5)) * 35);

// 底部中心点的坐标
let centerPoint = MathUtils.calculatePoint(startPoint, findCenterLength, triangleAngle - 180);
// 三角形底部两个点
let leftPoint = MathUtils.calculatePoint(centerPoint, findEdgeLength, triangleAngle + 90);
let rightPoint = MathUtils.calculatePoint(centerPoint, findEdgeLength, triangleAngle - 90);
// 绘制三角形
drawPath(canvas, ['M', startPoint, 'L', leftPoint, 'L', rightPoint])
//console.log(`makeTriangle#startPoint:${JSON.stringify(startPoint)},leftPoint:${JSON.stringify(leftPoint)},rightPoint:${JSON.stringify(rightPoint)}`)
},

绘制小鱼身

首先得到小鱼身的四个顶点,在得到左右两边的两个控制点,根据这六个点绘制一个封闭的path

drawBody(canvas, headPoint, bodyBottomCenterPoint, fishAngle) {
this.canvas.globalAlpha = 160 / 255 //加深小鱼身
// 身体的四个点
let topLeftPoint = MathUtils.calculatePoint(headPoint, this.HEAD_RADIUS, fishAngle + 90);
let topRightPoint = MathUtils.calculatePoint(headPoint, this.HEAD_RADIUS, fishAngle - 90);
let bottomLeftPoint = MathUtils.calculatePoint(bodyBottomCenterPoint, this.BIG_CIRCLE_RADIUS,
fishAngle + 90);
let bottomRightPoint = MathUtils.calculatePoint(bodyBottomCenterPoint, this.BIG_CIRCLE_RADIUS,
fishAngle - 90);

// 二阶贝塞尔曲线的控制点
let controlLeft = MathUtils.calculatePoint(headPoint, this.BODY_LENGTH * 0.56, fishAngle + 130);
let controlRight = MathUtils.calculatePoint(headPoint, this.BODY_LENGTH * 0.56, fishAngle - 130);

// 画小鱼身
drawPath(canvas, ['M', topLeftPoint, "Q", controlLeft, bottomLeftPoint, "L", bottomRightPoint, "Q", controlRight, topRightPoint])
this.canvas.globalAlpha = 100 / 255
},

小鱼的摆动

摆动

我们通过不断改变小鱼的旋转角度fishAngle来模拟小鱼的摆动,这里可以使用定时器,更为方便的可以使用Animator

startAnimation() {
if (this.animator == null) {
//fill: "none" | "forwards" | "backwards" | "both";
//direction: "normal" | "reverse" | "alternate" | "alternate-reverse";
var options = {
duration: 1 * 1000,
easing: 'ease',
iterations: -1,
direction: "alternate",
fill: "none",
begin: -5,
end: 5
};
this.animator = animator.createAnimator(options)

}
this.animator.play();
}

这里startAnimation方法中我们创建了一个Animator,并指定option,option中的参数说明如下

var options = {
duration: 1 * 1000, //动画的时长为1s
easing: 'ease', //动画的插值曲线,ease表示先加速在减速
iterations: -1, //动画的循环次数,默认是1,-1表示无线循环
direction: "alternate", //每次动画播放方向,alternate表示先正向播放在反向播放
fill: "none", //动画结束后是否动画状态设置,none表示设置为动画初始值
begin: -5, //动画插值起始值,这里表示小鱼的起始角度为-5°
end: 5 //动画插值结束值,这里表示小鱼的结束角度为5°
};

创建完动画我们通过指定onframe回调,currentValue是动画变化因子,currentValue影响小鱼角度。改完currentValue,我们调用onDraw()进行重绘制

this.animator.onframe = (value)=>{
this.currentValue = Number(value)
this.onDraw()
};
onDraw(){
let fishAngle = this.fishMainAngle+this.currentValue //得到当前小鱼的角度
//清除画布
this.clearCanvas()
//绘制小鱼头
this.drawHead(this.canvas)
....
}

效果如下:

⚠️这里虽然实现了小鱼的摆动,但是感觉怪怪的。日常小鱼摆动时,小鱼尾,节肢的幅度和频率要高于小鱼身体,这样才能不能显得呆板。幅度我们在小鱼尾和节肢那里增加一个currentValue相关乘积来扩大振幅。

drawSegment(canvas, bottomCenterPoint, bigRadius,
smallRadius, findSmallCircleLength, fishAngle,
isBigCircle) {
canvas.fillStyle = this.defaultFillStyle
// 节肢摆动的角度
let segmentAngle = 0;
if (isBigCircle) {
segmentAngle = (fishAngle+this.currentValue*2); //节肢1增大2倍
} else {
segmentAngle = (fishAngle+this.currentValue*3); //节肢1增大3倍
}


drawTriangle(canvas, startPoint, findCenterLength, findEdgeLength, fishAngle) {
canvas.fillStyle = 'rgba(244, 92,71,0.5)'
// 三角形小鱼尾的摆动角度需要跟着节肢2走
let triangleAngle = fishAngle+this.currentValue*3;


那如何实现动画更新时,小鱼各部位的频率不同呢,这里就涉及小鱼的变频

变频

方案一:对于不同频率的部位分别创建一个Animator,每个Animator分别管理相同部位的频率并绘制。交互比较复杂

方案二:使用正弦函数的周期性。sin(nx)的频率是sin(x)的n倍,如果小鱼的角度公式与sin(nx)相关,那么我们对不同部位设置不同的n值来实现频率不一致,比如头的角度=sin(2x),尾的角度=sin(3x),那么尾的频率就是头的1.5倍。

onDraw() {
this.clearCanvas(
let fishAngle = (this.fishMainAngle + Math.sin(MathUtils.toRadians(this.currentValue * 1.2)) * 4);
...
}

drawSegment(canvas, bottomCenterPoint, bigRadius,
smallRadius, findSmallCircleLength, fishAngle,
isBigCircle) {
canvas.fillStyle = this.defaultFillStyle
// 节肢摆动的角度
let segmentAngle = 0;
if (isBigCircle) {
segmentAngle = (fishAngle + Math.cos(MathUtils.toRadians(this.currentValue * 1.5)) * 15);
} else {
segmentAngle = (fishAngle + Math.sin(MathUtils.toRadians(this.currentValue * 1.5)) * 35);
}

复制如上fishAngle的频率扩大了1.2倍,节肢的频率扩大了1.5倍。sin,cos的角度变化范围,也就是currentValue的end-begin,必须是360度的整数倍,这样才能保证sin,cos的周期性。

我们这里设置begin=0,如下求currentValue的end值

设m = end*1.2/360,n=end*1.5/360
m=end/(360/1.2),n=end/(360/1.5)
m=end/300,n=end/240
end要整除300和240,则end是这两个数的最小公倍数
则end最小为1200

下面是变频的option

var options = {
duration: 5 * 1000,
easing: 'linear',
iterations: -1,
direction: "normal",
fill: "none",
begin: 0,
end: 1200 //必须是1200的倍数,1.5/360与1.2/360的最小公倍数是1200
}

调用

<element src="../fish/fish.hml"></element>
<div class="container">
<fish id="fish"></fish>
</div>

总结

通过本项目的演练,我们对自定义Canvas,JS动画,三角函数等有了更深的认识

这里只是实现了小鱼摆动和变频,后续有时间会接着增加点击屏幕实现小鱼的游动、游动时的转向、转向变频.

​想了解更多内容,请访问:​

​51CTO和华为官方合作共建的鸿蒙技术社区​

​https://harmonyos.51cto.com​

责任编辑:jianghua 来源: 鸿蒙社区
相关推荐

2021-11-01 10:21:36

鸿蒙HarmonyOS应用

2022-02-21 15:16:30

HarmonyOS鸿蒙操作系统

2021-09-15 10:19:15

鸿蒙HarmonyOS应用

2022-10-25 15:12:24

自定义组件鸿蒙

2022-10-26 15:54:46

canvas组件鸿蒙

2022-07-06 20:24:08

ArkUI计时组件

2022-02-16 16:09:12

鸿蒙游戏操作系统

2022-05-20 14:34:20

list组件鸿蒙操作系统

2022-04-24 15:17:56

鸿蒙操作系统

2021-02-20 12:34:53

鸿蒙HarmonyOS应用开发

2021-11-24 10:02:53

鸿蒙HarmonyOS应用

2017-07-18 16:07:23

Drawable动画Android

2017-07-19 14:59:26

Drawable动画实现

2021-03-09 15:23:45

鸿蒙HarmonyOS应用开发

2023-02-20 15:20:43

启动页组件鸿蒙

2021-12-24 15:46:23

鸿蒙HarmonyOS应用

2022-06-20 15:43:45

switch开关鸿蒙

2021-12-21 15:22:22

鸿蒙HarmonyOS应用

2022-06-30 14:02:07

鸿蒙开发消息弹窗组件

2022-07-15 16:45:35

slider滑块组件鸿蒙
点赞
收藏

51CTO技术栈公众号