0-1背包问题,你该了解这些!

开发 前端
有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

关于01背包问题,你该了解这些!

这周我们正式开始讲解背包问题!

但说实话,背包九讲对于小白来说确实不太友好,看起来还是有点费劲的,而且都是伪代码理解起来也吃力。

对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

如果这几种背包,分不清,我这里画了一个图,如下:

分割等和子集1

至于背包九讲中其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了。

之前可能有些录友已经可以熟练写出背包了,但只要把这个文章仔细看完,相信你会意外收获!

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划-背包问题

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是,这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

  重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

二维dp数组01背包

依然动规五部曲分析一波。

确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

只看这个二维数组的定义,大家一定会有点懵,看下面这个图:

动态规划-背包问题1

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

确定递推公式

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

动态规划-背包问题2

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

  1. for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。 
  2.     dp[0][j] = 0; 
  3. // 正序遍历 
  4. for (int j = weight[0]; j <= bagweight; j++) { 
  5.     dp[0][j] = value[0]; 

此时dp数组初始化情况如图所示:

动态规划-背包问题7

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

如图:

动态规划-背包问题10

最后初始化代码如下:

  1. // 初始化 dp 
  2. vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0)); 
  3. for (int j = weight[0]; j <= bagweight; j++) { 
  4.     dp[0][j] = value[0]; 

费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的。

确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

动态规划-背包问题3

那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!!但是先遍历物品更好理解。

那么我先给出先遍历物品,然后遍历背包重量的代码。

  1. // weight数组的大小 就是物品个数 
  2. for(int i = 1; i < weight.size(); i++) { // 遍历物品 
  3.     for(int j = 0; j <= bagweight; j++) { // 遍历背包容量 
  4.         if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
  5.         else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
  6.  
  7.     } 

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

例如这样:

  1. // weight数组的大小 就是物品个数 
  2. for(int j = 0; j <= bagweight; j++) { // 遍历背包容量 
  3.     for(int i = 1; i < weight.size(); i++) { // 遍历物品 
  4.         if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
  5.         else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
  6.     } 

为什么也是可以的呢?

要理解递归的本质和递推的方向。

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

动态规划-背包问题5

再来看看先遍历背包,再遍历物品呢,如图:

动态规划-背包问题6

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了。

举例推导dp数组

来看一下对应的dp数组的数值,如图:

动态规划-背包问题4

最终结果就是dp[2][4]。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。

主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。

完整c++测试代码

  1. void test_2_wei_bag_problem1() { 
  2.     vector<int> weight = {1, 3, 4}; 
  3.     vector<int> value = {15, 20, 30}; 
  4.     int bagweight = 4; 
  5.  
  6.     // 二维数组 
  7.     vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0)); 
  8.  
  9.     // 初始化 
  10.     for (int j = weight[0]; j <= bagweight; j++) { 
  11.         dp[0][j] = value[0]; 
  12.     } 
  13.  
  14.     // weight数组的大小 就是物品个数 
  15.     for(int i = 1; i < weight.size(); i++) { // 遍历物品 
  16.         for(int j = 0; j <= bagweight; j++) { // 遍历背包容量 
  17.             if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
  18.             else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
  19.  
  20.         } 
  21.     } 
  22.  
  23.     cout << dp[weight.size() - 1][bagweight] << endl; 
  24.  
  25. int main() { 
  26.     test_2_wei_bag_problem1(); 

总结

讲了这么多才刚刚把二维dp的01背包讲完,这里大家其实可以发现最简单的是推导公式了,推导公式估计看一遍就记下来了,但难就难在如何初始化和遍历顺序上。

可能有的同学并没有注意到初始化 和 遍历顺序的重要性,我们后面做力扣上背包面试题目的时候,大家就会感受出来了。

本文转载自微信公众号「代码随想录」,可以通过以下二维码关注。转载本文请联系代码随想录公众号。

 

责任编辑:武晓燕 来源: 代码随想录
相关推荐

2021-01-19 05:46:45

背包数组容量

2021-04-13 07:58:38

背包代码模式

2021-02-09 09:55:24

动态规划

2021-01-04 08:37:53

动态规划DP

2018-10-15 12:42:21

2021-07-13 14:03:24

二叉树满二叉树完全二叉树

2021-04-27 07:52:18

跳槽数据分析

2021-05-18 08:02:40

面试面试问题职业规划

2023-06-26 19:25:18

效率消息中心业务线

2021-03-29 09:37:17

SpringBoot常用注解Spring Boot

2022-12-23 08:03:45

西瓜业务SEO前端

2017-06-14 15:07:58

机房管理服务器

2020-04-03 18:43:21

大数据Hadoop数据

2021-05-11 07:39:58

跳槽谈薪工作

2020-10-29 10:26:28

DevOps软件自动化

2021-01-07 05:40:13

BLE模块Android

2023-10-30 07:30:08

VeCDP火山引擎

2024-02-29 07:42:00

数据系统数据库数据处理

2017-10-23 12:55:46

项目设计师流程

2017-01-09 16:40:07

React NatiAndroid 开发
点赞
收藏

51CTO技术栈公众号