整数拆分
力扣题目链接:https://leetcode-cn.com/problems/integer-break
给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。返回你可以获得的最大乘积。
示例 1:
- 输入: 2
- 输出: 1
- 解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:
- 输入: 10
- 输出: 36
- 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
说明: 你可以假设 n 不小于 2 且不大于 58。
思路
看到这道题目,都会想拆成两个呢,还是三个呢,还是四个....
我们来看一下如何使用动规来解决。
动态规划
动规五部曲,分析如下:
确定dp数组(dp table)以及下标的含义
dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。
dp[i]的定义讲贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!
确定递推公式
可以想 dp[i]最大乘积是怎么得到的呢?
其实可以从1遍历j,然后有两种渠道得到dp[i].
一个是j * (i - j) 直接相乘。
一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。
那有同学问了,j怎么就不拆分呢?
j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。
如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。
所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});
那么在取最大值的时候,为什么还要比较dp[i]呢?
因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。
dp的初始化
不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?
有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。
严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。
拆分0和拆分1的最大乘积是多少?
这是无解的。
这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!
确定遍历顺序
确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。
枚举j的时候,是从1开始的。i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。
所以遍历顺序为:
- for (int i = 3; i <= n ; i++) {
- for (int j = 1; j < i - 1; j++) {
- dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
- }
- }
举例推导dp数组
举例当n为10 的时候,dp数组里的数值,如下:
整数拆分
以上动规五部曲分析完毕,C++代码如下:
- class Solution {
- public:
- int integerBreak(int n) {
- vector<int> dp(n + 1);
- dp[2] = 1;
- for (int i = 3; i <= n ; i++) {
- for (int j = 1; j < i - 1; j++) {
- dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
- }
- }
- return dp[n];
- }
- };
贪心
本题也可以用贪心,每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!
我没有证明,而是直接用了结论。感兴趣的同学可以自己再去研究研究数学证明哈。
给出我的C++代码如下:
- class Solution {
- public:
- int integerBreak(int n) {
- if (n == 2) return 1;
- if (n == 3) return 2;
- if (n == 4) return 4;
- int result = 1;
- while (n > 4) {
- result *= 3;
- n -= 3;
- }
- result *= n;
- return result;
- }
- };
总结
本题掌握其动规的方法,就可以了,贪心的解法确实简单,但需要有数学证明,如果能自圆其说也是可以的。
其实这道题目的递推公式并不好想,而且初始化的地方也很有讲究,我在写本题的时候一开始写的代码是这样的:
- class Solution {
- public:
- int integerBreak(int n) {
- if (n <= 3) return 1 * (n - 1);
- vector<int> dp(n + 1, 0);
- dp[1] = 1;
- dp[2] = 2;
- dp[3] = 3;
- for (int i = 4; i <= n ; i++) {
- for (int j = 1; j < i - 1; j++) {
- dp[i] = max(dp[i], dp[i - j] * dp[j]);
- }
- }
- return dp[n];
- }
- };
这个代码也是可以过的!
在解释递推公式的时候,也可以解释通,dp[i] 就等于 拆解i - j的最大乘积 * 拆解j的最大乘积。看起来没毛病!
但是在解释初始化的时候,就发现自相矛盾了,dp[1]为什么一定是1呢?根据dp[i]的定义,dp[2]也不应该是2啊。
但如果递归公式是 dp[i] = max(dp[i], dp[i - j] * dp[j]);,就一定要这么初始化。递推公式没毛病,但初始化解释不通!
虽然代码在初始位置有一个判断if (n <= 3) return 1 * (n - 1);,保证n<=3 结果是正确的,但代码后面又要给dp[1]赋值1 和 dp[2] 赋值 2,这其实就是自相矛盾的代码,违背了dp[i]的定义!
我举这个例子,其实就说做题的严谨性,上面这个代码也可以AC,大体上一看好像也没有毛病,递推公式也说得过去,但是仅仅是恰巧过了而已。
其他语言版本
Java
- class Solution {
- public int integerBreak(int n) {
- //dp[i]为正整数i拆分结果的最大乘积
- int[] dp = new int[n+1];
- dp[2] = 1;
- for (int i = 3; i <= n; ++i) {
- for (int j = 1; j < i - 1; ++j) {
- //j*(i-j)代表把i拆分为j和i-j两个数相乘
- //j*dp[i-j]代表把i拆分成j和继续把(i-j)这个数拆分,取(i-j)拆分结果中的最大乘积与j相乘
- dp[i] = Math.max(dp[i], Math.max(j * (i - j), j * dp[i - j]));
- }
- }
- return dp[n];
- }
- }
Python
- class Solution:
- def integerBreak(self, n: int) -> int:
- dp = [0] * (n + 1)
- dp[2] = 1
- for i in range(3, n + 1):
- # 假设对正整数 i 拆分出的第一个正整数是 j(1 <= j < i),则有以下两种方案:
- # 1) 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 j * (i-j)
- # 2) 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 j * dp[i-j]
- for j in range(1, i - 1):
- dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j]))
- return dp[n]
Go
- func integerBreak(n int) int {
- /**
- 动态五部曲
- 1.确定dp下标及其含义
- 2.确定递推公式
- 3.确定dp初始化
- 4.确定遍历顺序
- 5.打印dp
- **/
- dp:=make([]int,n+1)
- dp[1]=1
- dp[2]=1
- for i:=3;i<n+1;i++{
- for j:=1;j<i-1;j++{
- // i可以差分为i-j和j。由于需要最大值,故需要通过j遍历所有存在的值,取其中最大的值作为当前i的最大值,在求最大值的时候,一个是j与i-j相乘,一个是j与dp[i-j].
- dp[i]=max(dp[i],max(j*(i-j),j*dp[i-j]))
- }
- }
- return dp[n]
- }
- func max(a,b int) int{
- if a>b{
- return a
- }
- return b
- }
Javascript
- var integerBreak = function(n) {
- let dp = new Array(n + 1).fill(0)
- dp[2] = 1
- for(let i = 3; i <= n; i++) {
- for(let j = 1; j < i; j++) {
- dp[i] = Math.max(dp[i], dp[i - j] * j, (i - j) * j)
- }
- }
- return dp[n]
- };