如何快速创建一个拥有异步任务队列集群的 Rest Api

开发 前端
本文分享如何使用 docker-compose、FastAPI、rq 来快速创建一个包含异步任务队列集群的 REST API,后端执行任务的节点可以随意扩展。

异步任务是 Web 后端开发中最常见的需求,非常适合多任务、高并发的场景。本文分享如何使用 docker-compose、FastAPI、rq 来快速创建一个包含异步任务队列集群的 REST API,后端执行任务的节点可以随意扩展。

系统的架构图:

上图中的每一个方框都可以理解为一个服务器。

用户请求 api, api 将任务放入 redis 队列,worker 自动去 redis 队列取出任务并执行,worker 节点可以任意水平扩展。

接下来,我们来实现这一架构的 demo,你可以看到 docker 的强大和方便之处。

1、先创建一个虚拟环境,安装依赖

依赖 fastapi,redis,rq 库,安装后生成一个 requirements.txt 文件

  1. mkdir myproject 
  2. python3 -m venv env 
  3. source env/bin/activate 
  4. pip install rq 
  5. pip install fastapi 
  6. pip install redis 
  7. pip freeze > requirements.txt 

2、编码实现 REST API、Worker

REST 是一种风格,这里不是重点,我们使用 FastAPI 来快速创建一个接口,新建一个 api.py 的文件,内容如下:

  1. from fastapi import FastAPI 
  2. from redis import Redis 
  3. from rq import Queue 
  4. from worker import send_captcha 
  5. app = FastAPI() 
  6.  
  7. # 需要注意,这里的 host 是主机名,在 docker 中就是服务名,后面的 docker-compose.ymal 中的服务名称也要是这个 
  8. redis_conn = Redis(host='myproj_redis', port=6379, db=0) 
  9.  
  10. # 定义一个队列,名称是 my_queue 
  11. q = Queue('my_queue'connection=redis_conn) 
  12.  
  13. @app.get('/hello'
  14. def hello(): 
  15.     """Test endpoint""" 
  16.     return {'hello''world'
  17.  
  18. # Rest API 示例 
  19. @app.post('/send_captcha/{phone_number}', status_code=201) 
  20. def addTask(phone_number: str): 
  21.     ""
  22.     Adds tasks to worker queue. 
  23.     Expects body as dictionary matching the Group class. 
  24.  
  25.     ""
  26.     job = q.enqueue(send_captcha, phone_number) 
  27.  
  28.     return {'job'"tasks add done."

这里的 send_captcha 函数就是一个异步任务,从 worker.py 中导入,worker.py 的内容如下:

  1. import time 
  2.  
  3. def send_captcha(phone_number): 
  4.     ""
  5.     模拟一个耗时的异步任务 
  6.     ""
  7.     print(f'{time.strftime("%T")} 准备发送手机验证码') # in place of actual logging 
  8.     print(f'{time.strftime("%T")} 生成随机验证码并存入 redis,设置 5 分钟过期时间'
  9.     time.sleep(5) # simulate long running task 
  10.     print(f'{time.strftime("%T")} {phone_number}发送完成'
  11.     return { phone_number: 'task complete'

return { phone_number: 'task complete'}

3、构建 Dokcer 镜像

现在的目标是实现一个拥有两个执行节点的集群。我们需要启动 4 个容器来完成一个集群部署:

  • 容器1:运行 FastAPI app
  • 容器2:运行 Redis 服务
  • 容器3:运行 worker 1 服务
  • 容器4:运行 worker 2 服务

其中容器 1、3、4 都是 Python 应用,可以共用一个 Python 镜像。

为了方便调试,我们可以让 1、3、4 容器共享我们的本地路径,这样改了代码就不需要重新构建镜像,比较方便。

创建一个包含依赖的 Python 镜像

现在我们来创建一个包含前文 requirements.txt 依赖的 Python 镜像,编写 Dockerfile,内容如下:

  1. FROM python:3.8-alpine 
  2. RUN adduser -D myproj 
  3. WORKDIR /home/myproj 
  4. COPY requirements.txt requirements.txt 
  5. RUN pip install -r requirements.txt 
  6. RUN chown -R myproj:myproj ./ 
  7. USER myproj 
  8. CMD uvicorn api:app --host 0.0.0.0 --port 5057 

内容说明:

FROM python:3.8-alpine

指定使用 python:3.8-alpine,这个容器已经预装了 Python3.8,可以在命令行执行 docker search python 看看有哪些 Python 镜像。

RUN adduser -D myproj

添加一个用户 myproj,这一步的主要目的是为了生成目录 /home/myproj

WORKDIR /home/myproj

设置程序的执行路径为 /home/myproj

COPY requirements.txt requirements.txt

复制当前路径下的 requirements.txt 到容器的 /home/myproj,这里没有复制 .py 文件是因为后面我们启动容器的时候会共享本地路径,不需要再复制了,生产部署时最好复制到窗口内部,这样容器就不会依赖本机。

RUN pip install -r requirements.txt

在容器中安装依赖

RUN chown -R myproj:myproj ./

将 /home/myproj 路径下的文件的拥有者和所属组改为 myproj,这一步为了使用 myproj 用户来启动 fastapi 服务,生产环境通常用 root 用户启动,也就不需要这个指令了。

USER myproj

切换到 myproj 用户

CMD uvicorn api:app --host 0.0.0.0 --port 5057

容器启动后执行的命令,服务端口为 5057

更多的 Dockerfile 语法请参考官方文档,这里仅是简要说明。

现在 Dockerfile 所在的目录执行下面的命令构建一个镜像:

  1. docker build -t myproject:latest . 

创建完成后,可以使用 docker images 来查看:

  1. ❯ docker images | grep myproj 
  2. myproject               

4、启动集群

这里使用 Docker Compose 来启动 4 个容器,为什么用 Docker Compose 呢?因为方便,如果不用的话,需要手动一个容器一个容器启动。

Docker Compose 会读取一个 yaml 格式的配置文件,依据配置文件来启动容器,各容器共享同一网络。还记得 api.py 中使用的 Redis 主机名吗,这里就需要将 redis 服务名设置为那个主机名。

编写一个 docker-compose.yml 内容如下:

  1. version: '3' 
  2.  
  3. services: 
  4.   myproj_redis: 
  5.     image: redis:4.0-alpine 
  6.     ports: 
  7.       - "6379:6379" 
  8.     volumes: 
  9.       - ./redis:/data 
  10.  
  11.   myproj_api: 
  12.     image: myproject:latest 
  13.     command: uvicorn api:app --host 0.0.0.0 --port 5057 
  14.     ports: 
  15.       - "5057:5057" 
  16.     volumes: 
  17.       - ./:/home/myproj 
  18.  
  19.   myproj_worker1: 
  20.     image: myproject:latest 
  21.     command: rq worker --url redis://myproj_redis:6379 my_queue 
  22.     volumes: 
  23.       - ./:/home/myproj 
  24.  
  25.   myproj_worker2: 
  26.     image: myproject:latest 
  27.     command: rq worker --url redis://myproj_redis:6379 my_queue 
  28.     volumes: 
  29.       - ./:/home/myproj 

第一个容器是 myproj_redis,运行着 redis 服务, redis 的数据通过 volumes 方式保存在本地,因此需要在本地创建一个 redis 目录,来映射容器内部的 /data 目录。

第二个容器就是 fastapi 服务,端口 5057,使用本地路径映射为 /home/myproj

第三个容器和第四个容器是 worker 节点,虽然也映射了本地路径,但它仅使用 worker.py 文件。当任务太多时,worker 节点可以扩展,解决负载压力,

最终的目录是这样:

执行 docker compose 命令启动 4 个容器:

  1. docker compose -f docker-compose.yml up 

可以看到 4 个服务均启动并正常打印了日志输出。

4、测试

现在来测试一下,左边的窗口,我使用 Python 快速发送了 3 个 post 请求:

  1. import subprocess 
  2. for i in range(3): 
  3.     subprocess.run("curl -v -X POST 'http://localhost:5057/send_captcha/18012345678'",shell = True

从右边窗口的日志输出可以看出 worker1 和 worker2 都执行了任务,其中 worker1 执行了 2 个,worker2 执行了 1 个。

查看完整代码请点击「阅读原文」

最后的话

本文分享了如何使用 Dockerfile 构建一个镜像,使用 Docker Compose 管理一个容器集群,以此为基础实现了一个具有异步任务队列集群的 REST API,抛砖引玉,关于 Dockerfile、docker-compose 的详细用法,还请参考 Docker 官方文档

 

责任编辑:武晓燕 来源: Python七号
相关推荐

2023-08-01 07:25:38

Expresso框架API

2021-08-10 07:27:42

Elasticsear集群开源

2023-11-19 20:16:43

RESTAPIPOST

2023-04-10 14:20:47

ChatGPTRESTAPI

2020-10-28 17:15:45

Redis前端数据库

2020-09-29 07:24:14

Python字典数据

2010-03-08 16:36:53

攻略备案域名注册淘宝网

2013-07-01 11:01:22

API设计API

2024-05-23 11:26:02

2023-05-11 12:40:00

Spring控制器HTTP

2024-01-02 13:58:04

GoREST API语言

2020-08-25 07:48:17

Kubernetes集群系统

2023-08-14 09:00:00

APIgRPCREST

2024-10-14 08:46:50

Controller开发代码

2020-09-22 07:50:23

API接口业务

2023-03-01 09:39:40

调度系统

2018-06-19 16:04:27

Dubbo应用Java

2013-05-02 10:40:24

xcode

2019-11-11 10:45:44

LinuxWindows 10Debian 10

2022-06-21 09:27:01

PythonFlaskREST API
点赞
收藏

51CTO技术栈公众号