英伟达神秘「变形」GPU曝光!5nm工艺,两种形态随心变

新闻
英伟达似乎把明年要发的新GPU提前自曝了!一个出现在论文里的神秘显卡GPU-N有着779TFLOPs的FP16性能,是A100的2.5倍。非常接近传闻中比A100强3倍的下一代Hopper GH100。

 [[442830]]

近日,在英伟达团队发表的新论文中提到了一个神秘的显卡:GPU-N。

据网友推测,这很可能就是下一代Hopper GH100芯片的内部代号。

英伟达神秘「变形」GPU曝光!5nm工艺,两种形态随心变

https://dl.acm.org/doi/10.1145/3484505

英伟达在这篇「GPU Domain Specialization via Composable On-Package Architecture」(通过可组合式封装架构实现GPU领域的专业化)的论文中,谈到了下一代GPU设计。

研究人员认为,当前要想提升深度学习性能,最实用的解决方案应该是最大限度地提高低精度矩阵计算的吞吐量。

简单来说,GPU-N有134个SM单元(A100中为104个SM);8576个CUDA核心(比A100多24%);60MB的二级缓存(比A100多50%);2.687TB/秒的DRAM带宽(可扩展至6.3TB/秒);高达100GB的HBM2e(通过COPA实现可扩展到233GB),以及6144位内存总线。

全新COPA-GPU架构

「GPU-N」采用了一种叫COPA的设计。

目前,当GPU以扩大其低精度矩阵计算吞吐量的方式来提高深度学习(DL)性能时,吞吐量和存储系统能力之间的平衡会被打破。

英伟达团队最终得出一个结论,基于FP32(或更大)的HPC和基于FP16(或更小)的DL,两者的工作负载是不一样的。那么,运行两种任务的GPU架构也不应该完全一样。

[[442831]]

而如果非得要求GPU满足不同的架构要求,去做一个融合设计,会导致任何一个应用领域的配置都不是最优的。

因此,可以给每个领域提供专用的GPU产品的可组合的(COPA-GPU)架构是解决这些不同需求的最实用的方案。

COPA-GPU利用多芯片模块分解,可以做到最大限度地支持GPU模块复用,以及每个应用领域的内存系统定制化。

英伟达神秘「变形」GPU曝光!5nm工艺,两种形态随心变

英伟达表示,COPA-GPU可以通过对基线GPU架构进行模块化增强,使其具有高达4倍的片外带宽、32倍的包内缓存和2.3倍的DRAM带宽和容量,同时支持面向HPC的缩减设计和面向DL的专业化产品。

这项工作探索了实现可组合的GPU所必需的微架构设计,并评估了可组合架构为HPC、DL训练和DL推理提供的性能增益。

实验表明,与一个融合的GPU设计相比,一个对DL任务进行过优化的COPA-GPU具有16倍大的缓存容量和1.6倍高的DRAM带宽。

每个GPU的训练和推理性能分别提高了31%和35%,并在扩展的训练场景中减少了50%的GPU使用数量。

英伟达神秘「变形」GPU曝光!5nm工艺,两种形态随心变

从纸面上的性能来看,「GPU-N」的时钟频率为1.4GHz(与A100的理论值相同),可以达到24.2 TFLOPs的FP32(是A100的1.24倍)和779 TFLOPs的FP16(是A100的2.5倍)。

与AMD的MI200相比,GPU-N的FP32的性能还不到一半(95.7 TFLOPs vs 24.2 TFLOPs),但GPU-N的FP16的性能却高出2.15倍(383TFLOPs vs 779TFLOPs)。

根据以往的信息可以推断,NVIDIA的H100加速器将基于MCM解决方案,并且会基于台积电的5nm工艺。

虽然不知道每个SM中的核心数量,但如果依然保持64个的话,那么最终就会有18,432个核心,比GA100多2.25倍。

Hopper还可以利用更多的FP64、FP16和Tensor内核,这将极大地提高性能。

GH100很可能会在每个GPU模块上启用144个SM单元中的134个。但是,如果不使用GPU稀疏性,英伟达不太可能达到与MI200相同的FP32或FP64 Flops。

此外,论文中还谈到了两种基于下一代架构的领域专用COPA-GPU,一种用于HPC,一种用于DL领域。

HPC变体采用的是非常标准的设计方案,包括MCM GPU设计和各自的HBM/MC+HBM(IO)芯片,但DL变体真的是一个很特殊的设计。

DL变体在一个完全独立的芯片上安装了一个巨大的缓存,与GPU模块相互连接。具有高达960/1920 MB的LLC(Last-Level-Cache),HBM2e DRAM容量也高达233GB,带宽高达6.3TB/s。

但是网友表示,英伟达似乎已经决定将重点放在DL性能上,因为FP32和FP64(HPC)性能的增长仅仅是来源于SM数量的增加。

这很可能在最后达不到传闻中的3倍性能。

鉴于英伟达已经发布了相关的信息,Hopper显卡很可能会在2022年GTC的大会上亮相。

规格预测

 

责任编辑:张燕妮 来源: 新智元
相关推荐

2012-05-14 11:53:37

Intel处理器芯片

2012-05-14 11:33:35

Intel7nm5nm

2012-09-18 10:11:45

Intel5nm线路图

2024-08-06 14:30:00

AI模型

2018-01-05 11:16:27

Intel衔枚产品

2023-09-27 12:57:37

AI研究

2021-01-22 15:27:22

5nm芯片芯片制程厂商

2019-11-25 15:00:58

CPUAMD

2023-10-11 13:25:00

训练模型

2023-02-28 07:28:18

2022-03-16 16:12:48

晶体管芯片半导体

2024-05-28 14:41:00

2018-09-04 15:50:44

芯片半导体AMD

2022-03-23 09:45:07

英伟达架构元宇宙

2023-03-17 07:54:32

英伟达RTX配备

2020-02-20 17:09:26

5nmiPhone 12三星

2024-05-13 08:20:00

GPU芯片

2012-05-16 10:35:25

英特尔芯片路线图

2020-10-10 15:46:33

华为禁令开发

2012-05-18 11:00:52

点赞
收藏

51CTO技术栈公众号