最新3D GAN可生成三维几何数据了!模型速度提升七倍

新闻 人工智能
英伟达和斯坦福大学联合推出的这个GAN,真是刷新了3D GAN的新高度。

[[441513]]

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

2D图片变3D,还能给出3D几何数据?

英伟达和斯坦福大学联合推出的这个GAN,真是刷新了3D GAN的新高度。

而且生成画质也更高,视角随便摇,面部都没有变形。

与过去传统的方法相比,它在速度上能快出7倍,而占用的内存却不到其十六分之一

最厉害的莫过于还可给出3D几何数据,像这些石像效果,就是根据提取的位置信息再渲染而得到的。

甚至还能实时交互编辑。

该框架一经发布,就在推特上吸引了大量网友围观,点赞量高达600+。

<span><span><span><i style=最新3D GAN可生成三维几何数据了!模型速度提升7倍 | 英伟达&斯坦福">

怎么样?是不是再次刷新你对2D升3D的想象了?

显隐混合+双重鉴别

事实上,只用一张单视角2D照片生成3D效果,此前已经有许多模型框架可以实现。

但是它们要么需要计算量非常大,要么给出的近似值与真正的3D效果不一致。

这就导致生成的效果会出现画质低、变形等问题。

为了解决以上的问题,研究人员提出了一种显隐混合神经网络架构 (hybrid explicit-implicit network architecture)。

这种方法可以绕过计算上的限制,还能不过分依赖对图像的上采样。

<span><span><span><i style=最新3D GAN可生成三维几何数据了!模型速度提升7倍 | 英伟达&斯坦福">

从对比中可以看出,纯隐式神经网络(如NeRF)使用带有位置编码(PE)的完全连接层(FC)来表示场景,会导致确定位置的速度很慢。

纯显式神经网络混合了小型隐式解码器的框架,虽然速度更快,但是却不能保证高分辨率的输出效果。

<span><span><span><i style=最新3D GAN可生成三维几何数据了!模型速度提升7倍 | 英伟达&斯坦福">

而英伟达和斯坦福大学提出的这个新方法EG3D,就将显式和隐式的表示优点结合在了一起。

它主要包括一个以StyleGAN2为基础的特征生成器和映射网络,一个轻量级的特征解码器,一个神经渲染模块、一个超分辨率模块和一个可以双重识别位置的StyleGAN2鉴别器。

其中,神经网络的主干为显式表示,它能够输出3D坐标;解码器部分则为隐式表示。

与典型的多层感知机制相比,该方法在速度上可快出7倍,而占用的内存却不到其十六分之一

与此同时,该方法还继承了StyleGAN2的特性,比如效果良好的隐空间(latent space)。

比如,在数据集FFHQ中插值后,EG3D的表现非常nice:

该方法使用中等分辨率(128 x 128)进行渲染,再用2D图像空间卷积来提高最终输出的分辨率和图像质量。

这种双重鉴别,可以确保最终输出图像和渲染输出的一致性,从而避免在不同视图下由于卷积层不一致而产生的问题。

△两图中左半边为最终输出效果,右半边为渲染输出

而没有使用双重鉴别的方法,在嘴角这种细节上就会出现一些扭曲。

△左图未使用双重鉴别;右图为EG3D方法效果

数据上,与此前方法对比,EG3D方法在256分辨率、512分辨率下的距离得分(FID)、识别一致性(ID)、深度准确性和姿态准确性上,表现都更好

<span><span><span><i style=最新3D GAN可生成三维几何数据了!模型速度提升7倍 | 英伟达&斯坦福">

团队介绍

此项研究由英伟达和斯坦福大学共同完成。

共同一作共有4位,分别是:Eric R. Chan、Connor Z. Lin、Matthew A. Chan、Koki Nagano。

其中,Eric R. Chan是斯坦福大学的一位博士研究生,此前曾参与过一些2D图像变3D的方法,比如pi-GAN。

[[441521]]最新3D GAN可生成三维几何数据了!模型速度提升7倍 | 英伟达&斯坦福">

Connor Z. Lin是斯坦福大学的一位正在读博二的研究生,本科和硕士均就读于卡内基梅隆大学,研究方向为计算机图形学、深度学习等。

[[441522]]最新3D GAN可生成三维几何数据了!模型速度提升7倍 | 英伟达&斯坦福">

Matthew A. Chan则是一位研究助理,以上三人均来自斯坦福大学计算机成像实验室(Computational Imaging Lab)。

Koki Nagano目前就职于英伟达,担任高级研究员,研究方向为计算机图形学,本科毕业于东京大学。

[[441523]]最新3D GAN可生成三维几何数据了!模型速度提升7倍 | 英伟达&斯坦福">

论文地址:
https://arxiv.org/abs/2112.07945

 

 

责任编辑:张燕妮 来源: 量子位
相关推荐

2024-07-03 14:29:38

2021-03-18 15:29:10

人工智能机器学习技术

2023-10-09 12:45:09

数据训练

2024-08-14 16:30:00

3D AIGC

2023-07-14 09:41:01

3DAI

2024-02-20 09:46:00

模型技术

2022-12-21 17:12:24

模型3D

2024-06-17 12:33:34

2021-09-14 10:11:46

谷歌3D舞蹈生成模型FACT

2024-01-29 06:50:00

3D模型

2017-02-23 10:44:53

2009-03-29 09:47:24

苹果Iphone移动OS

2020-08-26 10:37:21

阿里3D

2024-03-20 15:51:00

AI数据

2010-06-03 17:32:34

Tera

2023-04-24 16:25:47

3D开发

2024-07-16 12:02:11

2023-12-29 09:36:51

三维模型
点赞
收藏

51CTO技术栈公众号