一次倒在 LRU 上的经历

网络 通信技术
最近有个小伙伴跟我诉苦,说他没面到LRU,他说他很久前知道有被问过LRU的但是心想自己应该不会遇到,所以暂时就没准备。

[[438898]]

本文转载自微信公众号「bigsai」,作者大赛  。转载本文请联系bigsai公众号。

前言

大家好,我是bigsai,好久不见,甚是想念!

最近有个小伙伴跟我诉苦,说他没面到LRU,他说他很久前知道有被问过LRU的但是心想自己应该不会遇到,所以暂时就没准备。

奈何不巧,这还就真的考到了!他此刻的心情,可以用一张图来证明:

[[438899]]

他说他最终踉踉跄跄的写了一个效率不是很高的LRU,面试官看着不是很满意要求写一个O(1)复杂度的LRU……后来果真GG了,后来发现这是力扣146的一道原题。

防止日后再碰到这个坑,今天和大家一起把这个坑踩了,这道题我自身刚开始也是用较为普通的方法,但是好的方法虽然不是很难但是想了真的很久才想到,虽然花了太多时间不太值,总算是自己想出来了,将这个过程给大家分享一下(只从算法的角度,不从操作系统的角度)。

理解LRU

设计一个LRU,你得知道什么是LRU吧?

LRU,英文全称为Least Recently Used,翻译过来就是最近最久未使用算法,是一种常用的页面置换算法。

说起页面置换算法,这就是跟OS关系比较大的了,我们都知道内存的速度比较快,但是内存的容量是非常有限的,不可能给所有页面装到内存中,所以就需要一个策略将常用的页面预放到内存中。

但是吧,谁也不知道进程下次会访问哪个内存,并不能很有效的知道(我们在当前并没有预测未来的功能),所以有些页面置换算法只是理想化但是没法真实实现的(没错就是最佳置换算法(Optimal)),然后常见必回的算法就是FIFO(先进先出)和LRU(最近最久未使用)。

LRU理解不难,就是维护一个有固定大小的容器,核心就是get()和put()两个操作。

我们先看一下LRU会有的两个操作:

初始化:LRUCache(int capacity) ,以正整数作为容量 capacity 初始化 LRU 缓存。

查询:get(int key),从自己的设计的数据结构中查找是否有当前key对应的value,如果有那么返回对应值并且要将key更新记录为最近使用,如果没有返回-1。

插入/更新:put(int key,int value),可能是插入一个key-value,也可能是更新一个key-value,如果容器中已经存才这个key-value那么只需要更新对应value值,并且标记成最新。如果容器不存在这个值,那么要考虑容器是否满了,如果满了要先删除最久未使用的那对key-value。

这里的流程可以给大家举个例子,例如

容量大小为2:

  1. 容量大小为2: 
  2. "put",  "put""get""put","get""put","get","get","get"
  3. [ [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1],  [3], [4]] 

这个过程如下:

大家容易忽略的细节有:

  • put()存在更新的操作,例如put(3,3),put(3,4)会更新key为3的操作。
  • get()可能查询不到,但是查询到也会更新最久未使用的顺序。
  • 如果容器未使用满,那么put可能更新可能插入,但是不会删除;如果容器满了并且put插入,就要考虑删除最久未使用的key-value了。

对于上面的这么一个规则,我们该如何处理呢?

如果单单用一个List类似的列表,可以顺序存储键值对,在List前面的(0下标为前)我们认为它是比较久的,在List后我们认为它是比较新的。我们考虑下各种操作可能会这样设计:

如果来get操作:

遍历List一个个比对,查看是否有该key的键值对,如果有直接返回对应key的value,如果没有那么返回-1.

如果来put操作:

遍历List,如果有该key的键值对,那么果断删除这个key-value,最后在末尾统一插入该键值对。

如果没有对应的key并且List容器已经到达最满了,那么果断删除第一个位置的key-value。

用List可能需要两个(一个存key一个存value),或者一个存Node节点(key,value为属性)的List,考虑下这个时间复杂度:

put操作:O(n),get操作:O(n) 两个操作都需要枚举列表线性复杂度,效率属实有点拉胯,肯定不行,这样的代码我就不写了。

哈希初优化

从上面的分析来看,我们已经可以很自信的将LRU写出来了,不过现在要考虑的是一个优化的事情。

如果说我们将程序中引入哈希表,那么肯定会有一些优化的。用哈希表存储key-value,查询是否存在的操作都能优化为O(1),但是删除或者插入或者更新位置的复杂度可能还是O(n),我们一起分析一下:

最久未使用一定是一个有序的序列来储存,要么是顺序表(数组)要么是链表,如果是数组实现的ArrayList存储最久未使用这个序列。

如果是ArrayList进行删除最久未使用(第一个)key-value,新的key被命中变成最新被使用(先删除然后插入末尾)操作都是O(n)。

同理如果是LinkedList的一些操作大部分也是O(n)的,像删除第一个元素这个是因为数据结构原因O(1)。

你发现自己的优化空间其实非常非常小,但是确实还是有进步的,只是被卡住不知道双O(1)的操作究竟怎么优化,这里面我把这个版本代码放出来,大家可以参考一下(如果面试问到实在不会可以这么写)

  1. class LRUCache { 
  2.  
  3.     Map<Integer,Integer>map=new HashMap<>(); 
  4.     List<Integer>list=new ArrayList<>(); 
  5.     int maxSize; 
  6.     public  LRUCache(int capacity) { 
  7.         maxSize=capacity; 
  8.     } 
  9.  
  10.     public int get(int key) { 
  11.         if(!map.containsKey(key))//不存在返回-1 
  12.             return -1; 
  13.         int val=map.get(key); 
  14.         put(key,val);//要更新位置 变成最新 很重要! 
  15.         return val; 
  16.     } 
  17.  
  18.     public void put(int keyint value) { 
  19.         //如果key存在,直接更新即可 
  20.         if (map.containsKey(key)) { 
  21.             list.remove((Integerkey); 
  22.             list.add(key); 
  23.         } else {//如果不存在 要插入到最后,但是如果容量满了需要删除第一个(最久) 
  24.             if (!map.containsKey(key)) { 
  25.                 if (list.size() == maxSize) { 
  26.                     map.remove(list.get(0)); 
  27.                     list.remove(0); 
  28.                 } 
  29.                 list.add(key); 
  30.             } 
  31.         } 
  32.         map.put(key, value); 
  33.     } 

哈希+双链表

上面我们已经知道用哈希能够直接查到有木有这个元素,但是苦于删除!用List都很费力。

更详细的说,是苦于List的删除操作,Map的删除插入还是很高效的。

在上面这种情况,我们希望的就是能够快速删除List中任意一个元素,并且效率很高,如果借助哈希只能最多定位到,但是无法删除啊!该怎么办呢?

哈希+双链表啊!

我们将key-val的数据存到一个Node类中,然后每个Node知道左右节点,在插入链表的时候直接存入Map中,这样Map在查询的时候可以直接返回该节点,双链表知道左右节点可以直接将该节点在双链表中删除。

当然,为了效率,这里实现的双链表带头结点(头指针指向一个空节点防止删除等异常情况)和尾指针。

对于这个情况,你需要能够手写链表和双链表啦,双链表的增删改查已经写过清清楚楚,小伙伴们不要担心,这里我已经整理好啦:

单链表:https://mp.weixin.qq.com/s/Cq98GmXt61-2wFj4WWezSg

双链表:https://mp.weixin.qq.com/s/h6s7lXt5G3JdkBZTi01G3A

也就是你可以通过HashMap直接得到在双链表中对应的Node,然后根据前后节点关系删除,期间要考虑的一些null、尾指针删除等等特殊情况即可。

具体实现的代码为:

  1. class LRUCache { 
  2.     class Node { 
  3.         int key
  4.         int value; 
  5.         Node pre; 
  6.         Node next
  7.  
  8.         public Node() { 
  9.         } 
  10.  
  11.         public Node( int key,int value) { 
  12.             this.key = key
  13.             this.value=value; 
  14.         } 
  15.     } 
  16.     class DoubleList{ 
  17.         private Node head;// 头节点 
  18.         private Node tail;// 尾节点 
  19.         private int length; 
  20.         public DoubleList() { 
  21.             head = new Node(-1,-1); 
  22.             tail = head; 
  23.             length = 0; 
  24.         } 
  25.         void add(Node teamNode)// 默认尾节点插入 
  26.         { 
  27.             tail.next = teamNode; 
  28.             teamNode.pre=tail; 
  29.             tail = teamNode; 
  30.             length++; 
  31.         } 
  32.         void deleteFirst(){ 
  33.             if(head.next==null
  34.                 return
  35.             if(head.next==tail)//如果删除的那个刚好是tail  注意啦 tail指针前面移动 
  36.                 tail=head; 
  37.             head.next=head.next.next
  38.  
  39.             if(head.next!=null
  40.                 head.next.pre=head; 
  41.             length--; 
  42.         } 
  43.         void deleteNode(Node team){ 
  44.  
  45.             team.pre.next=team.next
  46.             if(team.next!=null
  47.                 team.next.pre=team.pre; 
  48.             if(team==tail) 
  49.                 tail=tail.pre; 
  50.            team.pre=null
  51.            team.next=null
  52.             length--; 
  53.         } 
  54.         public String toString() { 
  55.             Node team = head.next
  56.             String vaString = "len:"+length+" "
  57.             while (team != null) { 
  58.                 vaString +="key:"+team.key+" val:"+ team.value + " "
  59.                 team = team.next
  60.             } 
  61.             return vaString; 
  62.         } 
  63.     } 
  64.     Map<Integer,Node> map=new HashMap<>(); 
  65.     DoubleList doubleList;//存储顺序 
  66.     int maxSize; 
  67.     LinkedList<Integer>list2=new LinkedList<>(); 
  68.  
  69.     public   LRUCache(int capacity) { 
  70.         doubleList=new DoubleList(); 
  71.         maxSize=capacity; 
  72.     } 
  73.     public  void print(){ 
  74.         System.out.print("maplen:"+map.keySet().size()+" "); 
  75.         for(Integer in:map.keySet()){ 
  76.             System.out.print("key:"+in+" val:"+map.get(in).value+" "); 
  77.         } 
  78.         System.out.print("              "); 
  79.         System.out.println("listLen:"+doubleList.length+" "+doubleList.toString()+" maxSize:"+maxSize); 
  80.     } 
  81.  
  82.     public int get(int key) { 
  83.         int val; 
  84.         if(!map.containsKey(key)) 
  85.             return  -1; 
  86.         val=map.get(key).value; 
  87.         Node team=map.get(key); 
  88.         doubleList.deleteNode(team); 
  89.         doubleList.add(team); 
  90.         return  val; 
  91.     } 
  92.  
  93.     public void put(int keyint value) { 
  94.         if(map.containsKey(key)){// 已经有这个key 不考虑长短直接删除然后更新 
  95.            Node deleteNode=map.get(key); 
  96.             doubleList.deleteNode(deleteNode); 
  97.         } 
  98.         else if(doubleList.length==maxSize){//不包含并且长度小于 
  99.             Node first=doubleList.head.next
  100.             map.remove(first.key); 
  101.             doubleList.deleteFirst(); 
  102.         } 
  103.        Node node=new Node(key,value); 
  104.         doubleList.add(node); 
  105.         map.put(key,node); 
  106.  
  107.     } 

就这样,一个get和put都是O(1)复杂度的LRU写出来啦!

尾声

后来看了题解,才发现,Java中的LinkedHashMap也差不多是这种数据结构!几行解决,但是一般面试官可能不会认同,还是会希望大家能够手写一个双链表的。

  1. class LRUCache extends LinkedHashMap<IntegerInteger>{ 
  2.     private int capacity; 
  3.  
  4.     public LRUCache(int capacity) { 
  5.         super(capacity, 0.75F, true); 
  6.         this.capacity = capacity; 
  7.     } 
  8.  
  9.     public int get(int key) { 
  10.         return super.getOrDefault(key, -1); 
  11.     } 
  12.  
  13.     public void put(int keyint value) { 
  14.         super.put(key, value); 
  15.     } 
  16.  
  17.     @Override 
  18.     protected boolean removeEldestEntry(Map.Entry<IntegerInteger> eldest) { 
  19.         return size() > capacity;  
  20.     } 
  21. }//这个来源官方题解 给大家分享一下 

}//这个来源官方题解 给大家分享一下

哈希+双链表虽然在未看题解的情况想出来,但是真的花了挺久才想到这个点,以前见得确实比较少,高效手写LRU到今天算是真真正正的完全掌握啦!

不过除了LRU,其他的页面置换算法无论笔试还是面试也是非常高频啊,大家有空自己梳理一下哦。

 

除了算法水平真的很强的,不然大部分人其实不可能当场想到一些比较巧妙的方法,所以面对笔试最好的诀窍还是多刷力扣。

 

责任编辑:武晓燕 来源: bigsai
相关推荐

2012-08-28 09:21:59

Ajax查错经历Web

2023-03-29 09:36:32

2013-04-01 10:27:37

程序员失业

2011-04-13 09:21:30

死锁SQL Server

2016-12-06 09:34:33

线程框架经历

2013-01-17 10:31:13

JavaScriptWeb开发firebug

2021-04-13 18:17:48

Hbase集群配置

2021-01-22 05:35:19

Lvm模块Multipath

2012-07-12 14:35:31

面试经历

2022-06-10 11:06:23

服务下线

2018-09-14 10:48:45

Java内存泄漏

2015-04-28 15:31:09

2017-11-09 09:06:29

流量暴增优化

2020-11-23 07:13:13

Nodejs源码

2022-07-13 08:31:18

React问题排查

2018-12-06 16:25:39

数据库服务器线程池

2020-02-10 10:15:31

技术研发指标

2019-04-04 15:00:40

SQL索引数据库

2020-07-15 08:11:05

Linuxc++程序

2011-06-28 10:41:50

DBA
点赞
收藏

51CTO技术栈公众号