一个模型通杀八大视觉任务,一句话生成图像视频

新闻 人工智能
一共八种视觉任务,它其实全部都能搞定。它,就是由微软亚研院和北大联合打造的一个多模态预训练模型,在首届微软峰会上亮相。

[[437247]]

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

有这样一个模型。

它可以做到一句话生成视频

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

不仅零样本就能搞定,性能还直达SOTA

它的名字,叫“NüWA”(女娲)。

“女娲女娲,神通广大”,正如其名,一句话生成视频只是这个模型的技能之一

除此之外,一句话生成图片,草图生成图像、视频,图像补全,视频预测,图像编辑、视频编辑——

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

一共八种视觉任务,它其实全部都能搞定

完全是一位不折不扣的“全能型选手”。

它,就是由微软亚研院和北大联合打造的一个多模态预训练模型,在首届微软峰会上亮相。

目前,在推特上已“小有热度”。

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

八项全能“女娲”,单拎出来也不差

所以这个全能型选手究竟表现如何?

直接与SOTA模型对比,来看看“她”在各项任务上的表现。

文本生成图像中,不得不说,即使“女娲”的FID-0得分不及XMC-GAN,但在实际效果中,“女娲”生成的图肉眼可见的更好,清晰又逼真

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品
一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

文本到视频中,“女娲”每一项指标都获得了第一名,从逐帧图片来看,差距很明显。

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品
一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

视频预测中,所有模型使用64x64的分辨率,Cond.代表供预测的帧数。

尽管只有1帧,“女娲”也将FVD得分从94±2降到86.9

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品
一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

草图转图像时,与SOTA模型相比,“女娲”生成的卡车都更逼真。

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

而在零样本的图像补全任务中,“女娲”拥有更丰富的“想象力”

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

直接上效果:

并且,它的另一个优势是推理速度,几乎50秒就可以生成一个图像;而Paint By Word在推理过程中需要额外的训练,大约需要300秒才能收敛。

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

草图生成视频以及文本引导的视频编辑任务,是本次研究首次提出,目前还没有可比对象。

直接上效果:

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

看,像上面这些仅用色块勾勒轮廓的视频草图,经“女娲”之手就能生成相应视频。

而输入一段潜水视频,“女娲”也能在文本指导下让潜水员浮出水面、继续下潜,甚至“游”到天上。

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

可以说,“女娲”不仅技能多,哪个单项拿出来也完全不赖。

如何实现?

这样一个无论操作对象是图像还是视频,无论是合成新的、还是在已有素材上改造都能做到做好的“女娲”,是如何被打造出来的呢?

其实不难,把文字、图像、视频分别看做一维、二维、三维数据,分别对应3个以它们为输入的编码器。

另外预训练好一个处理图像与视频数据的3D解码器。

两者配合就获得了以上各种能力。

其中,对于图像补全、视频预测、图像视频编辑任务,输入的部分图像或视频直接馈送给解码器。

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

而编码解码器都是基于一个3D Nearby的自注意力机制(3DNA)建立的,该机制可以同时考虑空间和时间轴的上局部特性,定义如下:

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

W表示可学习的权重,X和C分别代表文本、图像、视频数据的3D表示:

一个模型通杀8大视觉任务,一句话生成图像视频|MSRA&北大出品

其中,h和w表示空间轴上的token数,s表时间轴上的token数(文本默认为1),d表示每个token的维数。

如果C=X,3DNA表示对目标X的自注意;如果C≠X,3DNA表示对在条件C下目标X的交叉注意。

该机制不仅可以降低模型的计算复杂度,还能提高生成结果的质量

此外,模型还使用VQ-GAN替代VQ-VAE进行视觉tokenization,这也让生成效果好上加好。

团队介绍

一作Chenfei Wu,北京邮电大学博士毕业,现工作于微软亚研院。

共同一作Jian Liang, 来自北京大学。

其余作者包括微软亚研院的高级研究员Lei Ji,首席研究员Fan Yang,合作首席科学家Daxin Jiang,以及北大副教授方跃坚。

通讯作者为微软亚研院的高级研究员&研究经理段楠。

论文地址:
https://arxiv.org/abs/2111.12417

 

 

责任编辑:张燕妮 来源: 量子位
相关推荐

2023-05-08 15:44:23

3D数字人

2023-09-05 23:34:52

Kubernetes云原生

2022-12-12 13:45:46

模型修图

2020-11-27 09:57:11

Python代码PyPy

2015-08-03 10:21:04

设计模式表达

2022-09-30 15:35:43

AI视频

2010-03-29 11:55:12

无线上网报错

2023-10-09 12:45:09

数据训练

2019-08-15 11:42:56

程序员电脑软件

2024-02-08 09:33:37

苹果AI

2023-05-12 14:13:23

3D建模OpenAI

2024-03-04 12:32:39

AI数据

2023-08-25 17:10:14

LLM人工智能

2014-05-07 10:47:51

移动金融互联网金融GMIC

2018-01-15 10:45:43

社交网络互联网巨头百度

2020-12-16 10:43:44

PythonPyPy代码

2023-08-28 00:53:03

AI3D

2024-11-11 11:34:26

2024-01-11 12:45:12

AI训练

2019-09-05 10:13:28

点赞
收藏

51CTO技术栈公众号