我们一起聊聊大数据框架发展史

大数据
Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计算的飞速发展。Spark 的火热或多或少的掩盖了其他分布式计算的系统身影。就像 Flink,也就在这个时候默默的发展着。

[[428812]]

这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop、Storm,以及后来的 Spark,他们都有着各自专注的应用场景。Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计算的飞速发展。Spark 的火热或多或少的掩盖了其他分布式计算的系统身影。就像 Flink,也就在这个时候默默的发展着。

在国外一些社区,有很多人将大数据的计算引擎分成了 4 代,当然,也有很多人不会认同。我们先姑且这么认为和讨论。

第1代——Hadoop MapReduce

首先第一代的计算引擎,无疑就是 Hadoop 承载的 MapReduce。它将计算分为两个阶段,分别为 Map 和 Reduce。对于上层应用来说,就不得不想方设法去拆分算法,甚至于不得不在上层应用实现多个 Job 的串联,以完成一个完整的算法,例如迭代计算。

介绍

MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。

  • 批处理
  • Mapper、Reducer

第2代——DAG框架(Tez) + MapReduce

由于这样的弊端,催生了支持 DAG 框架的产生。因此,支持 DAG 的框架被划分为第二代计算引擎。如 Tez 以及更上层的 Oozie。这里我们不去细究各种 DAG 实现之间的区别,不过对于当时的 Tez 和 Oozie 来说,大多还是批处理的任务。

介绍

Tez是Apache开源的支持DAG作业的计算框架,它直接源于MapReduce框架,核心思想是将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等,这样,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业。

  • 批处理
  • 1个Tez = MR(1) + MR(2) + ... + MR(n)
  • 相比MR效率有所提升

第3代——Spark

接下来就是以 Spark 为代表的第三代的计算引擎。第三代计算引擎的特点主要是 Job 内部的 DAG 支持(不跨越 Job),以及强调的实时计算。在这里,很多人也会认为第三代计算引擎也能够很好的运行批处理的 Job。

介绍

Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发的通用内存并行计算框架

Spark使用Scala语言进行实现,它是一种面向对象、函数式编程语言,能够像操作本地集合对象一样轻松地操作分布式数据集,具有以下特点。

  1. 运行速度快:Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算。官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍。
  2. 易用性好:Spark不仅支持Scala编写应用程序,而且支持Java和Python等语言进行编写,特别是Scala是一种高效、可拓展的语言,能够用简洁的代码处理较为复杂的处理工作。
  3. 通用性强:Spark生态圈即BDAS(伯克利数据分析栈)包含了Spark Core、Spark SQL、Spark Streaming、MLLib和GraphX等组件,这些组件分别处理Spark Core提供内存计算框架、SparkStreaming的实时处理应用、Spark SQL的即席查询、MLlib或MLbase的机器学习和GraphX的图处理。
  4. 随处运行:Spark具有很强的适应性,能够读取HDFS、Cassandra、HBase、S3和Techyon为持久层读写原生数据,能够以Mesos、YARN和自身携带的Standalone作为资源管理器调度job,来完成Spark应用程序的计算
  • 批处理、流处理、SQL高层API支持
  • 自带DAG
  • 内存迭代计算、性能较之前大幅提升

第4代——Flink

随着第三代计算引擎的出现,促进了上层应用快速发展,例如各种迭代计算的性能以及对流计算和 SQL 等的支持。Flink 的诞生就被归在了第四代。这应该主要表现在 Flink 对流计算的支持,以及更一步的实时性上面。当然 Flink 也可以支持 Batch 的任务,以及 DAG 的运算。

介绍

Flink 诞生于欧洲的一个大数据研究项目 StratoSphere。该项目是柏林工业大学的一个研究性项目。早期, Flink 是做 Batch 计算的,但是在 2014 年, StratoSphere 里面的核心成员孵化出 Flink,同年将 Flink 捐赠 Apache,并在后来成为 Apache 的顶级大数据项目,同时 Flink 计算的主流方向被定位为 Streaming, 即用流式计算来做所有大数据的计算,这就是 Flink 技术诞生的背景。

2014 年 Flink 作为主攻流计算的大数据引擎开始在开源大数据行业内崭露头角。区别于 Storm、Spark Streaming 以及其他流式计算引擎的是:它不仅是一个高吞吐、低延迟的计算引擎,同时还提供很多高级的功能。比如它提供了有状态的计算,支持状态管理,支持强一致性的数据语义以及支持 基于Event Time的WaterMark对延迟或乱序的数据进行处理等。

  • 批处理、流处理、SQL高层API支持
  • 自带DAG
  • 流式计算性能更高、可靠性更高

本文转载自微信公众号「大数据老哥」,作者大数据老哥。转载本文请联系大数据老哥公众号。

 

责任编辑:武晓燕 来源: 大数据老哥
相关推荐

2022-06-26 09:40:55

Django框架服务

2023-02-02 13:18:22

2023-08-04 08:20:56

DockerfileDocker工具

2023-06-30 08:18:51

敏捷开发模式

2023-08-10 08:28:46

网络编程通信

2022-05-24 08:21:16

数据安全API

2023-09-10 21:42:31

2024-02-20 21:34:16

循环GolangGo

2021-08-27 07:06:10

IOJava抽象

2015-12-17 14:48:27

2024-08-02 09:49:35

Spring流程Tomcat

2024-06-12 09:52:00

2022-12-05 09:10:21

2022-10-08 00:00:05

SQL机制结构

2023-03-26 23:47:32

Go内存模型

2022-02-23 08:41:58

NATIPv4IPv6

2024-07-26 09:47:28

2023-07-24 09:41:08

自动驾驶技术交通

2021-08-12 07:49:24

mysql

2022-09-22 08:06:29

计算机平板微信
点赞
收藏

51CTO技术栈公众号