认识本质之后,这就是一道模板题
子集
力扣题目链接:https://leetcode-cn.com/problems/subsets/
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
输入: nums = [1,2,3]
输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
思路
求子集问题和77.组合和131.分割回文串又不一样了。
如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!
其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。
那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!
有同学问了,什么时候for可以从0开始呢?
求排列问题的时候,就要从0开始,因为集合是有序的,{1, 2} 和{2, 1}是两个集合,排列问题我们后续的文章就会讲到的。
以示例中nums = [1,2,3]为例把求子集抽象为树型结构,如下:
子集
从图中红线部分,可以看出遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合。
回溯三部曲
- 递归函数参数
全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)
递归函数参数在上面讲到了,需要startIndex。
代码如下:
- vector<vector<int>> result;
- vector<int> path;
- void backtracking(vector<int>& nums, int startIndex) {
递归终止条件
从图中可以看出:
子集
剩余集合为空的时候,就是叶子节点。
那么什么时候剩余集合为空呢?
就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:
- if (startIndex >= nums.size()) {
- return;
- }
其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了。
- 单层搜索逻辑
求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树。
那么单层递归逻辑代码如下:
- for (int i = startIndex; i < nums.size(); i++) {
- path.push_back(nums[i]); // 子集收集元素
- backtracking(nums, i + 1); // 注意从i+1开始,元素不重复取
- path.pop_back(); // 回溯
- }
C++代码
根据关于回溯算法,你该了解这些!给出的回溯算法模板:
- void backtracking(参数) {
- if (终止条件) {
- 存放结果;
- return;
- }
- for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
- 处理节点;
- backtracking(路径,选择列表); // 递归
- 回溯,撤销处理结果
- }
- }
可以写出如下回溯算法C++代码:
- class Solution {
- private:
- vector<vector<int>> result;
- vector<int> path;
- void backtracking(vector<int>& nums, int startIndex) {
- result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉自己
- if (startIndex >= nums.size()) { // 终止条件可以不加
- return;
- }
- for (int i = startIndex; i < nums.size(); i++) {
- path.push_back(nums[i]);
- backtracking(nums, i + 1);
- path.pop_back();
- }
- }
- public:
- vector<vector<int>> subsets(vector<int>& nums) {
- result.clear();
- path.clear();
- backtracking(nums, 0);
- return result;
- }
- };
在注释中,可以发现可以不写终止条件,因为本来我们就要遍历整颗树。
有的同学可能担心不写终止条件会不会无限递归?
并不会,因为每次递归的下一层就是从i+1开始的。
本文转载自微信公众号「代码随想录」,可以通过以下二维码关注。转载本文请联系代码随想录公众号。