面试官:说说你对算法中时间复杂度,空间复杂度的理解?如何计算?

开发 开发工具 算法
算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别

[[424483]]

一、前言

算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别。

衡量不同算法之间的优劣主要是通过「时间」和「空间」两个维度去考量:

  • 时间维度:是指执行当前算法所消耗的时间,我们通常用「时间复杂度」来描述。
  • 空间维度:是指执行当前算法需要占用多少内存空间,我们通常用「空间复杂度」来描述

通常会遇到一种情况,时间和空间维度不能够兼顾,需要在两者之间取得一个平衡点是我们需要考虑的

一个算法通常存在最好、平均、最坏三种情况,我们一般关注的是最坏情况

最坏情况是算法运行时间的上界,对于某些算法来说,最坏情况出现的比较频繁,也意味着平均情况和最坏情况一样差

二、时间复杂度

时间复杂度是指执行这个算法所需要的计算工作量,其复杂度反映了程序执行时间「随输入规模增长而增长的量级」,在很大程度上能很好地反映出算法的优劣与否

一个算法花费的时间与算法中语句的「执行次数成正比」,执行次数越多,花费的时间就越多

算法的复杂度通常用大O符号表述,定义为T(n) = O(f(n)),常见的时间复杂度有:O(1)常数型、O(log n)对数型、O(n)线性型、O(nlogn)线性对数型、O(n^2)平方型、O(n^3)立方型、O(n^k)k次方型、O(2^n)指数型,如下图所示:

从上述可以看到,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低,由小到大排序如下:

  1. Ο(1)<Ο(log n)<Ο(n)<Ο(nlog n)<Ο(n2)<Ο(n3)<…<Ο(2^n)<Ο(n!) 

注意的是,算法复杂度只是描述算法的增长趋势,并不能说一个算法一定比另外一个算法高效,如果常数项过大的时候也会导致算法的执行时间变长

关于如何计算时间复杂度,可以看看如下简单例子:

  1. function process(n) { 
  2.   let a = 1 
  3.   let b = 2 
  4.   let sum = a + b 
  5.   for(let i = 0; i < n; i++) { 
  6.     sum += i 
  7.   } 
  8.   return sum 

该函数算法需要执行的运算次数用输入大小n的函数表示,即 T(n) = 2 + n + 1,那么时间复杂度为O(n + 3),又因为时间复杂度只关注最高数量级,且与之系数也没有关系,因此上述的时间复杂度为O(n)

又比如下面的例子:

  1. function process(n) { 
  2.  let count = 0 
  3.   for(let i = 0; i < n; i++){ 
  4.     for(let i = 0; i < n; i++){ 
  5.       count += 1 
  6.     } 
  7.   } 

循环里面嵌套循环,外面的循环执行一次,里面的循环执行n次,因此时间复杂度为 O(n*n*1 + 2) = O(n^2)

对于顺序执行的语句,总的时间复杂度等于其中最大的时间复杂度,如下:

  1. function process(n) { 
  2.   let sum = 0 
  3.   for(let i = 0; i < n; i++) { 
  4.     sum += i 
  5.   } 
  6.   for(let i = 0; i < n; i++){ 
  7.     for(let i = 0; i < n; i++){ 
  8.       sum += 1 
  9.     } 
  10.   } 
  11.   return sum 

上述第一部分复杂度为O(n),第二部分复杂度为O(n^2),总复杂度为max(O(n^2), O(n)) = O(n^2)

又如下一个例子:

  1. function process(n) { 
  2.   let i = 1; // ① 
  3.   while (i <= n) { 
  4.      i = i * 2; // ② 
  5.   } 

循环语句中以2的倍数来逼近n,每次都乘以2。如果用公式表示就是1 * 2 * 2 * 2 … * 2 <=n,也就是说2的x次方小于等于n时会执行循环体,记作2^x <= n,于是得出x<=logn

因此循环在执行logn次之后,便结束,因此时间复杂度为O(logn)

同理,如果一个O(n)循环里面嵌套O(logn)的循环,则时间复杂度为O(nlogn),像O(n^3)无非也就是嵌套了三层O(n)循环

三、空间复杂度

空间复杂度主要指执行算法所需内存的大小,用于对程序运行过程中所需要的临时存储空间的度量

除了需要存储空间、指令、常数、变量和输入数据外,还包括对数据进行操作的工作单元和存储计算所需信息的辅助空间

下面给出空间复杂度为O(1)的示例,如下

  1. let a = 1 
  2. let b = 2 
  3. let c = 3 

上述代码的临时空间不会随着n的变化而变化,因此空间复杂度为O(1)

  1. let arr [] 
  2. for(i=1; i<=n; ++i){ 
  3.   arr.push(i) 

上述可以看到,随着n的增加,数组的占用的内存空间越大

通常来说,只要算法不涉及到动态分配的空间,以及递归、栈所需的空间,空间复杂度通常为O(1),一个一维数组a[n],空间复杂度O(n),二维数组为O(n^2)

参考文献

 

  • https://juejin.cn/post/6844904167824162823#heading-7
  • https://zhuanlan.zhihu.com/p/50479555
  • https://cloud.tencent.com/developer/article/1769988

 

责任编辑:武晓燕 来源: JS每日一题
相关推荐

2024-04-25 08:33:25

算法时间复杂度空间复杂度

2021-01-05 10:41:42

算法时间空间

2019-11-18 12:41:35

算法Python计算复杂性理论

2009-07-09 10:45:16

C#基本概念复杂度递归与接口

2021-06-28 06:15:14

算法Algorithm时间空间复杂度

2020-12-30 05:35:56

数据结构算法

2021-10-15 09:43:12

希尔排序复杂度

2020-02-06 13:59:48

javascript算法复杂度

2024-05-20 09:04:29

时间复杂度代码

2019-12-24 09:46:00

Linux设置密码

2020-11-30 06:26:31

算法时间表示法

2021-07-29 11:30:54

递归算法

2024-06-05 09:35:00

2015-10-13 09:43:43

复杂度核心

2020-12-30 09:20:27

代码

2019-01-02 05:55:30

领域驱动软件复杂度

2018-12-18 10:11:37

软件复杂度软件系统软件开发

2022-08-16 09:04:23

代码圈圈复杂度节点

2023-03-03 08:43:08

代码重构系统

2014-12-10 09:23:14

点赞
收藏

51CTO技术栈公众号