Go语言如何操纵Kafka保证无消息丢失

开发 后端 Kafka
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。该项目的目标是为处理实时数据提供一个统一、高吞吐、低延迟的平台。其持久化层本质上是一个“按照分布式事务日志架构的大规模发布/订阅消息队列”,这使它作为企业级基础设施来处理流式数据非常有价值。

[[423396]]

背景

目前一些互联网公司会使用消息队列来做核心业务,因为是核心业务,所以对数据的最后一致性比较敏感,如果中间出现数据丢失,就会引来用户的投诉,年底绩效就变成325了。之前和几个朋友聊天,他们的公司都在用kafka来做消息队列,使用kafka到底会不会丢消息呢?如果丢消息了该怎么做好补偿措施呢?本文我们就一起来分析一下,并介绍如何使用Go操作Kafka可以不丢失数据。

本文操作kafka基于:https://github.com/Shopify/sarama

初识kafka架构

维基百科对kafka的介绍:

Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。该项目的目标是为处理实时数据提供一个统一、高吞吐、低延迟的平台。其持久化层本质上是一个“按照分布式事务日志架构的大规模发布/订阅消息队列”,这使它作为企业级基础设施来处理流式数据非常有价值。此外,Kafka可以通过Kafka Connect连接到外部系统(用于数据输入/输出),并提供了Kafka Streams——一个Java]流式处理库。该设计受事务日志的影响较大。

kafka的整体架构比较简单,主要由producer、broker、consumer组成:

截屏2021-09-12 上午10.00.13

针对架构图我们解释一个各个模块:

  • Producer:数据的生产者,可以将数据发布到所选择的topic中。
  • Consumer:数据的消费者,使用Consumer Group进行标识,在topic中的每条记录都会被分配给订阅消费组中的一个消费者实例,消费者实例可以分布在多个进程中或者多个机器上。
  • Broker:消息中间件处理节点(服务器),一个节点就是一个broker,一个Kafka集群由一个或多个broker组成。

还有些概念我们也介绍一下:

  • topic:可以理解为一个消息的集合,topic存储在broker中,一个topic可以有多个partition分区,一个topic可以有多个Producer来push消息,一个topic可以有多个消费者向其pull消息,一个topic可以存在一个或多个broker中。
  • partition:其是topic的子集,不同分区分配在不同的broker上进行水平扩展从而增加kafka并行处理能力,同topic下的不同分区信息是不同的,同一分区信息是有序的;每一个分区都有一个或者多个副本,其中会选举一个leader,fowller从leader拉取数据更新自己的log(每个分区逻辑上对应一个log文件夹),消费者向leader中pull信息。

kafka丢消息的三个节点

生产者push消息节点

先看一下producer的大概写入流程:

  • producer先从kafka集群找到该partition的leader
  • producer将消息发送给leader,leader将该消息写入本地
  • follwers从leader pull消息,写入本地log后leader发送ack
  • leader 收到所有 ISR 中的 replica 的 ACK 后,增加high watermark,并向 producer 发送 ack

截屏2021-09-12 上午11.16.43

通过这个流程我们可以看到kafka最终会返回一个ack来确认推送消息结果,这里kafka提供了三种模式:

  1. NoResponse RequiredAcks = 0 
  2. WaitForLocal RequiredAcks = 1 
  3. WaitForAll RequiredAcks = -1 
  • NoResponse RequiredAcks = 0:这个代表的就是数据推出的成功与否都与我无关了
  • WaitForLocal RequiredAcks = 1:当local(leader)确认接收成功后,就可以返回了
  • WaitForAll RequiredAcks = -1:当所有的leader和follower都接收成功时,才会返回

所以根据这三种模式我们就能推断出生产者在push消息时有一定几率丢失的,分析如下:

  • 如果我们选择了模式1,这种模式丢失数据的几率很大,无法重试
  • 如果我们选择了模式2,这种模式下只要leader不挂,就可以保证数据不丢失,但是如果leader挂了,follower还没有同步数据,那么就会有一定几率造成数据丢失
  • 如果选择了模式3,这种情况不会造成数据丢失,但是有可能会造成数据重复,假如leader与follower同步数据是网络出现问题,就有可能造成数据重复的问题。

所以在生产环境中我们可以选择模式2或者模式3来保证消息的可靠性,具体需要根据业务场景来进行选择,在乎吞吐量就选择模式2,不在乎吞吐量,就选择模式3,要想完全保证数据不丢失就选择模式3是最可靠的。

kafka集群自身故障造成

kafka集群接收到数据后会将数据进行持久化存储,最终数据会被写入到磁盘中,在写入磁盘这一步也是有可能会造成数据损失的,因为写入磁盘的时候操作系统会先将数据写入缓存,操作系统将缓存中数据写入磁盘的时间是不确定的,所以在这种情况下,如果kafka机器突然宕机了,也会造成数据损失,不过这种概率发生很小,一般公司内部kafka机器都会做备份,这种情况很极端,可以忽略不计。

消费者pull消息节点

push消息时会把数据追加到Partition并且分配一个偏移量,这个偏移量代表当前消费者消费到的位置,通过这个Partition也可以保证消息的顺序性,消费者在pull到某个消息后,可以设置自动提交或者手动提交commit,提交commit成功,offset就会发生偏移:

截屏2021-09-12 下午3.37.33

所以自动提交会带来数据丢失的问题,手动提交会带来数据重复的问题,分析如下:

  • 在设置自动提交的时候,当我们拉取到一个消息后,此时offset已经提交了,但是我们在处理消费逻辑的时候失败了,这就会导致数据丢失了
  • 在设置手动提交时,如果我们是在处理完消息后提交commit,那么在commit这一步发生了失败,就会导致重复消费的问题。

比起数据丢失,重复消费是符合业务预期的,我们可以通过一些幂等性设计来规避这个问题。

实战

完整代码已经上传github:https://github.com/asong2020/Golang_Dream/tree/master/code_demo/kafka_demo

解决push消息丢失问题

主要是通过两点来解决:

  • 通过设置RequiredAcks模式来解决,选用WaitForAll可以保证数据推送成功,不过会影响时延时
  • 引入重试机制,设置重试次数和重试间隔

因此我们写出如下代码(摘出创建client部分):

  1. func NewAsyncProducer() sarama.AsyncProducer { 
  2.  cfg := sarama.NewConfig() 
  3.  version, err := sarama.ParseKafkaVersion(VERSION) 
  4.  if err != nil{ 
  5.   log.Fatal("NewAsyncProducer Parse kafka version failed", err.Error()) 
  6.   return nil 
  7.  } 
  8.  cfg.Version = version 
  9.  cfg.Producer.RequiredAcks = sarama.WaitForAll // 三种模式任君选择 
  10.  cfg.Producer.Partitioner = sarama.NewHashPartitioner 
  11.  cfg.Producer.Return.Successes = true 
  12.  cfg.Producer.Return.Errors = true 
  13.  cfg.Producer.Retry.Max = 3 // 设置重试3次 
  14.  cfg.Producer.Retry.Backoff = 100 * time.Millisecond 
  15.  cli, err := sarama.NewAsyncProducer([]string{ADDR}, cfg) 
  16.  if err != nil{ 
  17.   log.Fatal("NewAsyncProducer failed", err.Error()) 
  18.   return nil 
  19.  } 
  20.  return cli 

解决pull消息丢失问题

这个解决办法就比较粗暴了,直接使用自动提交的模式,在每次真正消费完之后在自己手动提交offset,但是会产生重复消费的问题,不过很好解决,使用幂等性操作即可解决。

代码示例:

  1. func NewConsumerGroup(group string) sarama.ConsumerGroup { 
  2.  cfg := sarama.NewConfig() 
  3.  version, err := sarama.ParseKafkaVersion(VERSION) 
  4.  if err != nil{ 
  5.   log.Fatal("NewConsumerGroup Parse kafka version failed", err.Error()) 
  6.   return nil 
  7.  } 
  8.  
  9.  cfg.Version = version 
  10.  cfg.Consumer.Group.Rebalance.Strategy = sarama.BalanceStrategyRange 
  11.  cfg.Consumer.Offsets.Initial = sarama.OffsetOldest 
  12.  cfg.Consumer.Offsets.Retry.Max = 3 
  13.  cfg.Consumer.Offsets.AutoCommit.Enable = true // 开启自动提交,需要手动调用MarkMessage才有效 
  14.  cfg.Consumer.Offsets.AutoCommit.Interval = 1 * time.Second // 间隔 
  15.  client, err := sarama.NewConsumerGroup([]string{ADDR}, group, cfg) 
  16.  if err != nil { 
  17.   log.Fatal("NewConsumerGroup failed", err.Error()) 
  18.  } 
  19.  return client 

上面主要是创建ConsumerGroup部分,细心的读者应该看到了,我们这里使用的是自动提交,说好的使用手动提交呢?这是因为我们这个kafka库的特性不同,这个自动提交需要与MarkMessage()方法配合使用才会提交(有疑问的朋友可以实践一下,或者看一下源码),否则也会提交失败,因为我们在写消费逻辑时要这样写:

  1. func (e EventHandler) ConsumeClaim(session sarama.ConsumerGroupSession, claim sarama.ConsumerGroupClaim) error { 
  2.  for msg := range claim.Messages() { 
  3.   var data common.KafkaMsg 
  4.   if err := json.Unmarshal(msg.Value, &data); err != nil { 
  5.    return errors.New("failed to unmarshal message err is " + err.Error()) 
  6.   } 
  7.   // 操作数据,改用打印 
  8.   log.Print("consumerClaim data is "
  9.  
  10.   // 处理消息成功后标记为处理, 然后会自动提交 
  11.   session.MarkMessage(msg,""
  12.  } 
  13.  return nil 

或者直接使用手动提交方法来解决,只需两步:

第一步:关闭自动提交:

  1. consumerConfig.Consumer.Offsets.AutoCommit.Enable = false  // 禁用自动提交,改为手动 

第二步:消费逻辑中添加如下代码,手动提交模式下,也需要先进行标记,在进行commit

  1. session.MarkMessage(msg,""
  2. session.Commit() 

完整代码可以到github上下载并进行验证!

总结

本文我们主要说明了两个知识点:

Kafka会产生消息丢失

使用Go操作Kafka如何配置可以不丢失数据

 

日常业务开发中,很多公司都喜欢拿消息队列进行解耦,那么你就要注意了,使用Kafka做消息队列无法保证数据不丢失,需要我们自己手动配置补偿,别忘记了,要不又是一场P0事故。

 

责任编辑:武晓燕 来源: Golang梦工厂
相关推荐

2024-06-18 08:26:22

2024-08-06 09:55:25

2021-08-04 07:47:18

Kafka消息框架

2021-03-08 10:19:59

MQ消息磁盘

2022-08-26 05:24:04

中间件技术Kafka

2021-10-22 08:37:13

消息不丢失rocketmq消息队列

2019-03-13 09:27:57

宕机Kafka数据

2023-11-27 17:29:43

Kafka全局顺序性

2024-11-11 07:05:00

Redis哨兵模式主从复制

2024-02-26 08:10:00

Redis数据数据库

2022-03-31 08:26:44

RocketMQ消息排查

2023-09-13 08:14:57

RocketMQ次数机制

2024-01-16 08:24:59

消息队列KafkaRocketMQ

2022-07-11 08:01:55

Kafka服务器宕机

2020-10-14 08:36:10

RabbitMQ消息

2024-05-09 08:04:23

RabbitMQ消息可靠性

2023-11-27 13:18:00

Redis数据不丢失

2024-04-11 08:29:35

Kafka异步发送发送端重试

2024-04-09 09:08:09

Kafka消息架构

2021-02-02 11:01:31

RocketMQ消息分布式
点赞
收藏

51CTO技术栈公众号