目录
- 设置 Prometheus 和 Grafana 来监控 Longhorn
- 将 Longhorn 指标集成到 Rancher 监控系统中
- Longhorn 监控指标
- 支持 Kubelet Volume 指标
- Longhorn 警报规则示例
设置 Prometheus 和 Grafana 来监控 Longhorn
概览
Longhorn 在 REST 端点 http://LONGHORN_MANAGER_IP:PORT/metrics 上以 Prometheus 文本格式原生公开指标。有关所有可用指标的说明,请参阅 Longhorn's metrics。您可以使用 Prometheus, Graphite, Telegraf 等任何收集工具来抓取这些指标,然后通过 Grafana 等工具将收集到的数据可视化。
本文档提供了一个监控 Longhorn 的示例设置。监控系统使用 Prometheus 收集数据和警报,使用 Grafana 将收集的数据可视化/仪表板(visualizing/dashboarding)。高级概述来看,监控系统包含:
- Prometheus 服务器从 Longhorn 指标端点抓取和存储时间序列数据。Prometheus 还负责根据配置的规则和收集的数据生成警报。Prometheus 服务器然后将警报发送到 Alertmanager。
- AlertManager 然后管理这些警报(alerts),包括静默(silencing)、抑制(inhibition)、聚合(aggregation)和通过电子邮件、呼叫通知系统和聊天平台等方法发送通知。
- Grafana 向 Prometheus 服务器查询数据并绘制仪表板进行可视化。
下图描述了监控系统的详细架构。
上图中有 2 个未提及的组件:
- Longhorn 后端服务是指向 Longhorn manager pods 集的服务。Longhorn 的指标在端点 http://LONGHORN_MANAGER_IP:PORT/metrics 的 Longhorn manager pods 中公开。
- Prometheus operator 使在 Kubernetes 上运行 Prometheus 变得非常容易。operator 监视 3 个自定义资源:ServiceMonitor、Prometheus 和 AlertManager。当用户创建这些自定义资源时,Prometheus Operator 会使用用户指定的配置部署和管理 Prometheus server, AlerManager。
安装
按照此说明将所有组件安装到 monitoring 命名空间中。要将它们安装到不同的命名空间中,请更改字段 namespace: OTHER_NAMESPACE
创建 monitoring 命名空间
apiVersion: v1
kind: Namespace
metadata:
name: monitoring
- 1.
- 2.
- 3.
- 4.
安装 Prometheus Operator
部署 Prometheus Operator 及其所需的 ClusterRole、ClusterRoleBinding 和 Service Account。
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus-operator
subjects:
- kind: ServiceAccount
name: prometheus-operator
namespace: monitoring
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
rules:
- apiGroups:
- apiextensions.k8s.io
resources:
- customresourcedefinitions
verbs:
- create
- apiGroups:
- apiextensions.k8s.io
resourceNames:
- alertmanagers.monitoring.coreos.com
- podmonitors.monitoring.coreos.com
- prometheuses.monitoring.coreos.com
- prometheusrules.monitoring.coreos.com
- servicemonitors.monitoring.coreos.com
- thanosrulers.monitoring.coreos.com
resources:
- customresourcedefinitions
verbs:
- get
- update
- apiGroups:
- monitoring.coreos.com
resources:
- alertmanagers
- alertmanagers/finalizers
- prometheuses
- prometheuses/finalizers
- thanosrulers
- thanosrulers/finalizers
- servicemonitors
- podmonitors
- prometheusrules
verbs:
- '*'
- apiGroups:
- apps
resources:
- statefulsets
verbs:
- '*'
- apiGroups:
- ""
resources:
- configmaps
- secrets
verbs:
- '*'
- apiGroups:
- ""
resources:
- pods
verbs:
- list
- delete
- apiGroups:
- ""
resources:
- services
- services/finalizers
- endpoints
verbs:
- get
- create
- update
- delete
- apiGroups:
- ""
resources:
- nodes
verbs:
- list
- watch
- apiGroups:
- ""
resources:
- namespaces
verbs:
- get
- list
- watch
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
template:
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
spec:
containers:
- args:
- --kubelet-service=kube-system/kubelet
- --logtostderr=true
- --config-reloader-image=jimmidyson/configmap-reload:v0.3.0
- --prometheus-config-reloader=quay.io/prometheus-operator/prometheus-config-reloader:v0.38.3
image: quay.io/prometheus-operator/prometheus-operator:v0.38.3
name: prometheus-operator
ports:
- containerPort: 8080
name: http
resources:
limits:
cpu: 200m
memory: 200Mi
requests:
cpu: 100m
memory: 100Mi
securityContext:
allowPrivilegeEscalation: false
nodeSelector:
beta.kubernetes.io/os: linux
securityContext:
runAsNonRoot: true
runAsUser: 65534
serviceAccountName: prometheus-operator
---
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
---
apiVersion: v1
kind: Service
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
spec:
clusterIP: None
ports:
- name: http
port: 8080
targetPort: http
selector:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.
- 133.
- 134.
- 135.
- 136.
- 137.
- 138.
- 139.
- 140.
- 141.
- 142.
- 143.
- 144.
- 145.
- 146.
- 147.
- 148.
- 149.
- 150.
- 151.
- 152.
- 153.
- 154.
- 155.
- 156.
- 157.
- 158.
- 159.
- 160.
- 161.
- 162.
- 163.
- 164.
- 165.
- 166.
- 167.
- 168.
- 169.
- 170.
- 171.
- 172.
- 173.
- 174.
- 175.
- 176.
- 177.
- 178.
- 179.
- 180.
- 181.
- 182.
- 183.
- 184.
- 185.
- 186.
安装 Longhorn ServiceMonitor
Longhorn ServiceMonitor 有一个标签选择器 app: longhorn-manager 来选择 Longhorn 后端服务。稍后,Prometheus CRD 可以包含 Longhorn ServiceMonitor,以便 Prometheus server 可以发现所有 Longhorn manager pods 及其端点。
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: longhorn-prometheus-servicemonitor
namespace: monitoring
labels:
name: longhorn-prometheus-servicemonitor
spec:
selector:
matchLabels:
app: longhorn-manager
namespaceSelector:
matchNames:
- longhorn-system
endpoints:
- port: manager
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
安装和配置 Prometheus AlertManager
使用 3 个实例创建一个高可用的 Alertmanager 部署:
apiVersion: monitoring.coreos.com/v1
kind: Alertmanager
metadata:
name: longhorn
namespace: monitoring
spec:
replicas: 3
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
除非提供有效配置,否则 Alertmanager 实例将无法启动。有关 Alertmanager 配置的更多说明,请参见此处。下面的代码给出了一个示例配置:
global:
resolve_timeout: 5m
route:
group_by: [alertname]
receiver: email_and_slack
receivers:
- name: email_and_slack
email_configs:
- to: <the email address to send notifications to>
from: <the sender address>
smarthost: <the SMTP host through which emails are sent>
# SMTP authentication information.
auth_username: <the username>
auth_identity: <the identity>
auth_password: <the password>
headers:
subject: 'Longhorn-Alert'
text: |-
{{ range .Alerts }}
*Alert:* {{ .Annotations.summary }} - `{{ .Labels.severity }}`
*Description:* {{ .Annotations.description }}
*Details:*
{{ range .Labels.SortedPairs }} • *{{ .Name }}:* `{{ .Value }}`
{{ end }}
{{ end }}
slack_configs:
- api_url: <the Slack webhook URL>
channel: <the channel or user to send notifications to>
text: |-
{{ range .Alerts }}
*Alert:* {{ .Annotations.summary }} - `{{ .Labels.severity }}`
*Description:* {{ .Annotations.description }}
*Details:*
{{ range .Labels.SortedPairs }} • *{{ .Name }}:* `{{ .Value }}`
{{ end }}
{{ end }}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
将上述 Alertmanager 配置保存在名为 alertmanager.yaml 的文件中,并使用 kubectl 从中创建一个 secret。
Alertmanager 实例要求 secret 资源命名遵循 alertmanager-{ALERTMANAGER_NAME} 格式。在上一步中,Alertmanager 的名称是 longhorn,所以 secret 名称必须是 alertmanager-longhorn
$ kubectl create secret generic alertmanager-longhorn --from-file=alertmanager.yaml -n monitoring
- 1.
为了能够查看 Alertmanager 的 Web UI,请通过 Service 公开它。一个简单的方法是使用 NodePort 类型的 Service :
apiVersion: v1
kind: Service
metadata:
name: alertmanager-longhorn
namespace: monitoring
spec:
type: NodePort
ports:
- name: web
nodePort: 30903
port: 9093
protocol: TCP
targetPort: web
selector:
alertmanager: longhorn
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
创建上述服务后,您可以通过节点的 IP 和端口 30903 访问 Alertmanager 的 web UI。
使用上面的 NodePort 服务进行快速验证,因为它不通过 TLS 连接进行通信。您可能希望将服务类型更改为 ClusterIP,并设置一个 Ingress-controller 以通过 TLS 连接公开 Alertmanager 的 web UI。
安装和配置 Prometheus server
创建定义警报条件的 PrometheusRule 自定义资源。
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
prometheus: longhorn
role: alert-rules
name: prometheus-longhorn-rules
namespace: monitoring
spec:
groups:
- name: longhorn.rules
rules:
- alert: LonghornVolumeUsageCritical
annotations:
description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is at {{$value}}% used for
more than 5 minutes.
summary: Longhorn volume capacity is over 90% used.
expr: 100 * (longhorn_volume_usage_bytes / longhorn_volume_capacity_bytes) > 90
for: 5m
labels:
issue: Longhorn volume {{$labels.volume}} usage on {{$labels.node}} is critical.
severity: critical
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
有关如何定义警报规则的更多信息,请参见https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules
如果激活了 RBAC 授权,则为 Prometheus Pod 创建 ClusterRole 和 ClusterRoleBinding:
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus
namespace: monitoring
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
name: prometheus
namespace: monitoring
rules:
- apiGroups: [""]
resources:
- nodes
- services
- endpoints
- pods
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources:
- configmaps
verbs: ["get"]
- nonResourceURLs: ["/metrics"]
verbs: ["get"]
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: prometheus
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: monitoring
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
创建 Prometheus 自定义资源。请注意,我们在 spec 中选择了 Longhorn 服务监视器(service monitor)和 Longhorn 规则。
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
name: prometheus
namespace: monitoring
spec:
replicas: 2
serviceAccountName: prometheus
alerting:
alertmanagers:
- namespace: monitoring
name: alertmanager-longhorn
port: web
serviceMonitorSelector:
matchLabels:
name: longhorn-prometheus-servicemonitor
ruleSelector:
matchLabels:
prometheus: longhorn
role: alert-rules
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
为了能够查看 Prometheus 服务器的 web UI,请通过 Service 公开它。一个简单的方法是使用 NodePort 类型的 Service:
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: monitoring
spec:
type: NodePort
ports:
- name: web
nodePort: 30904
port: 9090
protocol: TCP
targetPort: web
selector:
prometheus: prometheus
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
创建上述服务后,您可以通过节点的 IP 和端口 30904 访问 Prometheus server 的 web UI。
此时,您应该能够在 Prometheus server UI 的目标和规则部分看到所有 Longhorn manager targets 以及 Longhorn rules。
使用上述 NodePort service 进行快速验证,因为它不通过 TLS 连接进行通信。您可能希望将服务类型更改为 ClusterIP,并设置一个 Ingress-controller 以通过 TLS 连接公开 Prometheus server 的 web UI。
安装 Grafana
创建 Grafana 数据源配置:
apiVersion: v1
kind: ConfigMap
metadata:
name: grafana-datasources
namespace: monitoring
data:
prometheus.yaml: |-
{
"apiVersion": 1,
"datasources": [
{
"access":"proxy",
"editable": true,
"name": "prometheus",
"orgId": 1,
"type": "prometheus",
"url": "http://prometheus:9090",
"version": 1
}
]
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
创建 Grafana 部署:
apiVersion: apps/v1
kind: Deployment
metadata:
name: grafana
namespace: monitoring
labels:
app: grafana
spec:
replicas: 1
selector:
matchLabels:
app: grafana
template:
metadata:
name: grafana
labels:
app: grafana
spec:
containers:
- name: grafana
image: grafana/grafana:7.1.5
ports:
- name: grafana
containerPort: 3000
resources:
limits:
memory: "500Mi"
cpu: "300m"
requests:
memory: "500Mi"
cpu: "200m"
volumeMounts:
- mountPath: /var/lib/grafana
name: grafana-storage
- mountPath: /etc/grafana/provisioning/datasources
name: grafana-datasources
readOnly: false
volumes:
- name: grafana-storage
emptyDir: {}
- name: grafana-datasources
configMap:
defaultMode: 420
name: grafana-datasources
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
在 NodePort 32000 上暴露 Grafana:
apiVersion: v1
kind: Service
metadata:
name: grafana
namespace: monitoring
spec:
selector:
app: grafana
type: NodePort
ports:
- port: 3000
targetPort: 3000
nodePort: 32000
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
使用上述 NodePort 服务进行快速验证,因为它不通过 TLS 连接进行通信。您可能希望将服务类型更改为 ClusterIP,并设置一个 Ingress-controller 以通过 TLS 连接公开 Grafana。
使用端口 32000 上的任何节点 IP 访问 Grafana 仪表板。默认凭据为:
User: admin
Pass: admin
- 1.
- 2.
安装 Longhorn dashboard
进入 Grafana 后,导入预置的面板:https://grafana.com/grafana/dashboards/13032
有关如何导入 Grafana dashboard 的说明,请参阅 https://grafana.com/docs/grafana/latest/reference/export_import/
成功后,您应该会看到以下 dashboard:
将 Longhorn 指标集成到 Rancher 监控系统中
关于 Rancher 监控系统
使用 Rancher,您可以通过与领先的开源监控解决方案 Prometheus 的集成来监控集群节点、Kubernetes 组件和软件部署的状态和进程。
有关如何部署/启用 Rancher 监控系统的说明,请参见https://rancher.com/docs/rancher/v2.x/en/monitoring-alerting/
将 Longhorn 指标添加到 Rancher 监控系统
如果您使用 Rancher 来管理您的 Kubernetes 并且已经启用 Rancher 监控,您可以通过简单地部署以下 ServiceMonitor 将 Longhorn 指标添加到 Rancher 监控中:
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: longhorn-prometheus-servicemonitor
namespace: longhorn-system
labels:
name: longhorn-prometheus-servicemonitor
spec:
selector:
matchLabels:
app: longhorn-manager
namespaceSelector:
matchNames:
- longhorn-system
endpoints:
- port: manager
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
创建 ServiceMonitor 后,Rancher 将自动发现所有 Longhorn 指标。
然后,您可以设置 Grafana 仪表板以进行可视化。
Longhorn 监控指标
Volume(卷)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_volume_actual_size_bytes | 对应节点上卷的每个副本使用的实际空间 | longhorn_volume_actual_size_bytes{node="worker-2",volume="testvol"} 1.1917312e+08 |
longhorn_volume_capacity_bytes | 此卷的配置大小(以 byte 为单位) | longhorn_volume_capacity_bytes{node="worker-2",volume="testvol"} 6.442450944e+09 |
longhorn_volume_state | 本卷状态:1=creating, 2=attached, 3=Detached, 4=Attaching, 5=Detaching, 6=Deleting | longhorn_volume_state{node="worker-2",volume="testvol"} 2 |
longhorn_volume_robustness | 本卷的健壮性: 0=unknown, 1=healthy, 2=degraded, 3=faulted | longhorn_volume_robustness{node="worker-2",volume="testvol"} 1 |
Node(节点)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_node_status | 该节点的状态:1=true, 0=false | longhorn_node_status{condition="ready",condition_reason="",node="worker-2"} 1 |
longhorn_node_count_total | Longhorn 系统中的节点总数 | longhorn_node_count_total 4 |
longhorn_node_cpu_capacity_millicpu | 此节点上的最大可分配 CPU | longhorn_node_cpu_capacity_millicpu{node="worker-2"} 2000 |
longhorn_node_cpu_usage_millicpu | 此节点上的 CPU 使用率 | longhorn_node_cpu_usage_millicpu{node="pworker-2"} 186 |
longhorn_node_memory_capacity_bytes | 此节点上的最大可分配内存 | longhorn_node_memory_capacity_bytes{node="worker-2"} 4.031229952e+09 |
longhorn_node_memory_usage_bytes | 此节点上的内存使用情况 | longhorn_node_memory_usage_bytes{node="worker-2"} 1.833582592e+09 |
longhorn_node_storage_capacity_bytes | 本节点的存储容量 | longhorn_node_storage_capacity_bytes{node="worker-3"} 8.3987283968e+10 |
longhorn_node_storage_usage_bytes | 该节点的已用存储 | longhorn_node_storage_usage_bytes{node="worker-3"} 9.060941824e+09 |
longhorn_node_storage_reservation_bytes | 此节点上为其他应用程序和系统保留的存储空间 | longhorn_node_storage_reservation_bytes{node="worker-3"} 2.519618519e+10 |
Disk(磁盘)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_disk_capacity_bytes | 此磁盘的存储容量 | longhorn_disk_capacity_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 8.3987283968e+10 |
longhorn_disk_usage_bytes | 此磁盘的已用存储空间 | longhorn_disk_usage_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 9.060941824e+09 |
longhorn_disk_reservation_bytes | 此磁盘上为其他应用程序和系统保留的存储空间 | longhorn_disk_reservation_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 2.519618519e+10 |
Instance Manager(实例管理器)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_instance_manager_cpu_usage_millicpu | 这个 longhorn 实例管理器的 CPU 使用率 | longhorn_instance_manager_cpu_usage_millicpu{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 80 |
longhorn_instance_manager_cpu_requests_millicpu | 在这个 Longhorn 实例管理器的 kubernetes 中请求的 CPU 资源 | longhorn_instance_manager_cpu_requests_millicpu{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 250 |
longhorn_instance_manager_memory_usage_bytes | 这个 longhorn 实例管理器的内存使用情况 | longhorn_instance_manager_memory_usage_bytes{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 2.4072192e+07 |
longhorn_instance_manager_memory_requests_bytes | 这个 longhorn 实例管理器在 Kubernetes 中请求的内存 | longhorn_instance_manager_memory_requests_bytes{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 0 |
Manager(管理器)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_manager_cpu_usage_millicpu | 这个 Longhorn Manager 的 CPU 使用率 | longhorn_manager_cpu_usage_millicpu{manager="longhorn-manager-5rx2n",node="worker-2"} 27 |
longhorn_manager_memory_usage_bytes | 这个 Longhorn Manager 的内存使用情况 | longhorn_manager_memory_usage_bytes{manager="longhorn-manager-5rx2n",node="worker-2"} 2.6144768e+07 |
支持 Kubelet Volume 指标
关于 Kubelet Volume 指标
Kubelet 公开了以下指标:
- kubelet_volume_stats_capacity_bytes
- kubelet_volume_stats_available_bytes
- kubelet_volume_stats_used_bytes
- kubelet_volume_stats_inodes
- kubelet_volume_stats_inodes_free
- kubelet_volume_stats_inodes_used
这些指标衡量与 Longhorn 块设备内的 PVC 文件系统相关的信息。
它们与 longhorn_volume_* 指标不同,后者测量特定于 Longhorn 块设备(block device)的信息。
您可以设置一个监控系统来抓取 Kubelet 指标端点以获取 PVC 的状态并设置异常事件的警报,例如 PVC 即将耗尽存储空间。
一个流行的监控设置是 prometheus-operator/kube-prometheus-stack,,它抓取 kubelet_volume_stats_* 指标并为它们提供仪表板和警报规则。
Longhorn CSI 插件支持
在 v1.1.0 中,Longhorn CSI 插件根据 CSI spec 支持 NodeGetVolumeStats RPC。
这允许 kubelet 查询 Longhorn CSI 插件以获取 PVC 的状态。
然后 kubelet 在 kubelet_volume_stats_* 指标中公开该信息。
Longhorn 警报规则示例
我们在下面提供了几个示例 Longhorn 警报规则供您参考。请参阅此处获取所有可用 Longhorn 指标的列表并构建您自己的警报规则。
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
prometheus: longhorn
role: alert-rules
name: prometheus-longhorn-rules
namespace: monitoring
spec:
groups:
- name: longhorn.rules
rules:
- alert: LonghornVolumeActualSpaceUsedWarning
annotations:
description: The actual space used by Longhorn volume {{$labels.volume}} on {{$labels.node}} is at {{$value}}% capacity for
more than 5 minutes.
summary: The actual used space of Longhorn volume is over 90% of the capacity.
expr: (longhorn_volume_actual_size_bytes / longhorn_volume_capacity_bytes) * 100 > 90
for: 5m
labels:
issue: The actual used space of Longhorn volume {{$labels.volume}} on {{$labels.node}} is high.
severity: warning
- alert: LonghornVolumeStatusCritical
annotations:
description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is Fault for
more than 2 minutes.
summary: Longhorn volume {{$labels.volume}} is Fault
expr: longhorn_volume_robustness == 3
for: 5m
labels:
issue: Longhorn volume {{$labels.volume}} is Fault.
severity: critical
- alert: LonghornVolumeStatusWarning
annotations:
description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is Degraded for
more than 5 minutes.
summary: Longhorn volume {{$labels.volume}} is Degraded
expr: longhorn_volume_robustness == 2
for: 5m
labels:
issue: Longhorn volume {{$labels.volume}} is Degraded.
severity: warning
- alert: LonghornNodeStorageWarning
annotations:
description: The used storage of node {{$labels.node}} is at {{$value}}% capacity for
more than 5 minutes.
summary: The used storage of node is over 70% of the capacity.
expr: (longhorn_node_storage_usage_bytes / longhorn_node_storage_capacity_bytes) * 100 > 70
for: 5m
labels:
issue: The used storage of node {{$labels.node}} is high.
severity: warning
- alert: LonghornDiskStorageWarning
annotations:
description: The used storage of disk {{$labels.disk}} on node {{$labels.node}} is at {{$value}}% capacity for
more than 5 minutes.
summary: The used storage of disk is over 70% of the capacity.
expr: (longhorn_disk_usage_bytes / longhorn_disk_capacity_bytes) * 100 > 70
for: 5m
labels:
issue: The used storage of disk {{$labels.disk}} on node {{$labels.node}} is high.
severity: warning
- alert: LonghornNodeDown
annotations:
description: There are {{$value}} Longhorn nodes which have been offline for more than 5 minutes.
summary: Longhorn nodes is offline
expr: longhorn_node_total - (count(longhorn_node_status{condition="ready"}==1) OR on() vector(0))
for: 5m
labels:
issue: There are {{$value}} Longhorn nodes are offline
severity: critical
- alert: LonghornIntanceManagerCPUUsageWarning
annotations:
description: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} has CPU Usage / CPU request is {{$value}}% for
more than 5 minutes.
summary: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} has CPU Usage / CPU request is over 300%.
expr: (longhorn_instance_manager_cpu_usage_millicpu/longhorn_instance_manager_cpu_requests_millicpu) * 100 > 300
for: 5m
labels:
issue: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} consumes 3 times the CPU request.
severity: warning
- alert: LonghornNodeCPUUsageWarning
annotations:
description: Longhorn node {{$labels.node}} has CPU Usage / CPU capacity is {{$value}}% for
more than 5 minutes.
summary: Longhorn node {{$labels.node}} experiences high CPU pressure for more than 5m.
expr: (longhorn_node_cpu_usage_millicpu / longhorn_node_cpu_capacity_millicpu) * 100 > 90
for: 5m
labels:
issue: Longhorn node {{$labels.node}} experiences high CPU pressure.
severity: warning
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
在https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules 查看有关如何定义警报规则的更多信息。