目录
- 设置 Prometheus 和 Grafana 来监控 Longhorn
- 将 Longhorn 指标集成到 Rancher 监控系统中
- Longhorn 监控指标
- 支持 Kubelet Volume 指标
- Longhorn 警报规则示例
设置 Prometheus 和 Grafana 来监控 Longhorn
概览
Longhorn 在 REST 端点 http://LONGHORN_MANAGER_IP:PORT/metrics 上以 Prometheus 文本格式原生公开指标。有关所有可用指标的说明,请参阅 Longhorn's metrics。您可以使用 Prometheus, Graphite, Telegraf 等任何收集工具来抓取这些指标,然后通过 Grafana 等工具将收集到的数据可视化。
本文档提供了一个监控 Longhorn 的示例设置。监控系统使用 Prometheus 收集数据和警报,使用 Grafana 将收集的数据可视化/仪表板(visualizing/dashboarding)。高级概述来看,监控系统包含:
- Prometheus 服务器从 Longhorn 指标端点抓取和存储时间序列数据。Prometheus 还负责根据配置的规则和收集的数据生成警报。Prometheus 服务器然后将警报发送到 Alertmanager。
- AlertManager 然后管理这些警报(alerts),包括静默(silencing)、抑制(inhibition)、聚合(aggregation)和通过电子邮件、呼叫通知系统和聊天平台等方法发送通知。
- Grafana 向 Prometheus 服务器查询数据并绘制仪表板进行可视化。
下图描述了监控系统的详细架构。
上图中有 2 个未提及的组件:
- Longhorn 后端服务是指向 Longhorn manager pods 集的服务。Longhorn 的指标在端点 http://LONGHORN_MANAGER_IP:PORT/metrics 的 Longhorn manager pods 中公开。
- Prometheus operator 使在 Kubernetes 上运行 Prometheus 变得非常容易。operator 监视 3 个自定义资源:ServiceMonitor、Prometheus 和 AlertManager。当用户创建这些自定义资源时,Prometheus Operator 会使用用户指定的配置部署和管理 Prometheus server, AlerManager。
安装
按照此说明将所有组件安装到 monitoring 命名空间中。要将它们安装到不同的命名空间中,请更改字段 namespace: OTHER_NAMESPACE
创建 monitoring 命名空间
- apiVersion: v1
- kind: Namespace
- metadata:
- name: monitoring
安装 Prometheus Operator
部署 Prometheus Operator 及其所需的 ClusterRole、ClusterRoleBinding 和 Service Account。
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRoleBinding
- metadata:
- labels:
- app.kubernetes.io/component: controller
- app.kubernetes.io/name: prometheus-operator
- app.kubernetes.io/version: v0.38.3
- name: prometheus-operator
- namespace: monitoring
- roleRef:
- apiGroup: rbac.authorization.k8s.io
- kind: ClusterRole
- name: prometheus-operator
- subjects:
- - kind: ServiceAccount
- name: prometheus-operator
- namespace: monitoring
- ---
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRole
- metadata:
- labels:
- app.kubernetes.io/component: controller
- app.kubernetes.io/name: prometheus-operator
- app.kubernetes.io/version: v0.38.3
- name: prometheus-operator
- namespace: monitoring
- rules:
- - apiGroups:
- - apiextensions.k8s.io
- resources:
- - customresourcedefinitions
- verbs:
- - create
- - apiGroups:
- - apiextensions.k8s.io
- resourceNames:
- - alertmanagers.monitoring.coreos.com
- - podmonitors.monitoring.coreos.com
- - prometheuses.monitoring.coreos.com
- - prometheusrules.monitoring.coreos.com
- - servicemonitors.monitoring.coreos.com
- - thanosrulers.monitoring.coreos.com
- resources:
- - customresourcedefinitions
- verbs:
- - get
- - update
- - apiGroups:
- - monitoring.coreos.com
- resources:
- - alertmanagers
- - alertmanagers/finalizers
- - prometheuses
- - prometheuses/finalizers
- - thanosrulers
- - thanosrulers/finalizers
- - servicemonitors
- - podmonitors
- - prometheusrules
- verbs:
- - '*'
- - apiGroups:
- - apps
- resources:
- - statefulsets
- verbs:
- - '*'
- - apiGroups:
- - ""
- resources:
- - configmaps
- - secrets
- verbs:
- - '*'
- - apiGroups:
- - ""
- resources:
- - pods
- verbs:
- - list
- - delete
- - apiGroups:
- - ""
- resources:
- - services
- - services/finalizers
- - endpoints
- verbs:
- - get
- - create
- - update
- - delete
- - apiGroups:
- - ""
- resources:
- - nodes
- verbs:
- - list
- - watch
- - apiGroups:
- - ""
- resources:
- - namespaces
- verbs:
- - get
- - list
- - watch
- ---
- apiVersion: apps/v1
- kind: Deployment
- metadata:
- labels:
- app.kubernetes.io/component: controller
- app.kubernetes.io/name: prometheus-operator
- app.kubernetes.io/version: v0.38.3
- name: prometheus-operator
- namespace: monitoring
- spec:
- replicas: 1
- selector:
- matchLabels:
- app.kubernetes.io/component: controller
- app.kubernetes.io/name: prometheus-operator
- template:
- metadata:
- labels:
- app.kubernetes.io/component: controller
- app.kubernetes.io/name: prometheus-operator
- app.kubernetes.io/version: v0.38.3
- spec:
- containers:
- - args:
- - --kubelet-service=kube-system/kubelet
- - --logtostderr=true
- - --config-reloader-image=jimmidyson/configmap-reload:v0.3.0
- - --prometheus-config-reloader=quay.io/prometheus-operator/prometheus-config-reloader:v0.38.3
- image: quay.io/prometheus-operator/prometheus-operator:v0.38.3
- name: prometheus-operator
- ports:
- - containerPort: 8080
- name: http
- resources:
- limits:
- cpu: 200m
- memory: 200Mi
- requests:
- cpu: 100m
- memory: 100Mi
- securityContext:
- allowPrivilegeEscalation: false
- nodeSelector:
- beta.kubernetes.io/os: linux
- securityContext:
- runAsNonRoot: true
- runAsUser: 65534
- serviceAccountName: prometheus-operator
- ---
- apiVersion: v1
- kind: ServiceAccount
- metadata:
- labels:
- app.kubernetes.io/component: controller
- app.kubernetes.io/name: prometheus-operator
- app.kubernetes.io/version: v0.38.3
- name: prometheus-operator
- namespace: monitoring
- ---
- apiVersion: v1
- kind: Service
- metadata:
- labels:
- app.kubernetes.io/component: controller
- app.kubernetes.io/name: prometheus-operator
- app.kubernetes.io/version: v0.38.3
- name: prometheus-operator
- namespace: monitoring
- spec:
- clusterIP: None
- ports:
- - name: http
- port: 8080
- targetPort: http
- selector:
- app.kubernetes.io/component: controller
- app.kubernetes.io/name: prometheus-operator
安装 Longhorn ServiceMonitor
Longhorn ServiceMonitor 有一个标签选择器 app: longhorn-manager 来选择 Longhorn 后端服务。稍后,Prometheus CRD 可以包含 Longhorn ServiceMonitor,以便 Prometheus server 可以发现所有 Longhorn manager pods 及其端点。
- apiVersion: monitoring.coreos.com/v1
- kind: ServiceMonitor
- metadata:
- name: longhorn-prometheus-servicemonitor
- namespace: monitoring
- labels:
- name: longhorn-prometheus-servicemonitor
- spec:
- selector:
- matchLabels:
- app: longhorn-manager
- namespaceSelector:
- matchNames:
- - longhorn-system
- endpoints:
- - port: manager
安装和配置 Prometheus AlertManager
使用 3 个实例创建一个高可用的 Alertmanager 部署:
- apiVersion: monitoring.coreos.com/v1
- kind: Alertmanager
- metadata:
- name: longhorn
- namespace: monitoring
- spec:
- replicas: 3
除非提供有效配置,否则 Alertmanager 实例将无法启动。有关 Alertmanager 配置的更多说明,请参见此处。下面的代码给出了一个示例配置:
- global:
- resolve_timeout: 5m
- route:
- group_by: [alertname]
- receiver: email_and_slack
- receivers:
- - name: email_and_slack
- email_configs:
- - to: <the email address to send notifications to>
- from: <the sender address>
- smarthost: <the SMTP host through which emails are sent>
- # SMTP authentication information.
- auth_username: <the username>
- auth_identity: <the identity>
- auth_password: <the password>
- headers:
- subject: 'Longhorn-Alert'
- text: |-
- {{ range .Alerts }}
- *Alert:* {{ .Annotations.summary }} - `{{ .Labels.severity }}`
- *Description:* {{ .Annotations.description }}
- *Details:*
- {{ range .Labels.SortedPairs }} • *{{ .Name }}:* `{{ .Value }}`
- {{ end }}
- {{ end }}
- slack_configs:
- - api_url: <the Slack webhook URL>
- channel: <the channel or user to send notifications to>
- text: |-
- {{ range .Alerts }}
- *Alert:* {{ .Annotations.summary }} - `{{ .Labels.severity }}`
- *Description:* {{ .Annotations.description }}
- *Details:*
- {{ range .Labels.SortedPairs }} • *{{ .Name }}:* `{{ .Value }}`
- {{ end }}
- {{ end }}
将上述 Alertmanager 配置保存在名为 alertmanager.yaml 的文件中,并使用 kubectl 从中创建一个 secret。
Alertmanager 实例要求 secret 资源命名遵循 alertmanager-{ALERTMANAGER_NAME} 格式。在上一步中,Alertmanager 的名称是 longhorn,所以 secret 名称必须是 alertmanager-longhorn
- $ kubectl create secret generic alertmanager-longhorn --from-file=alertmanager.yaml -n monitoring
为了能够查看 Alertmanager 的 Web UI,请通过 Service 公开它。一个简单的方法是使用 NodePort 类型的 Service :
- apiVersion: v1
- kind: Service
- metadata:
- name: alertmanager-longhorn
- namespace: monitoring
- spec:
- type: NodePort
- ports:
- - name: web
- nodePort: 30903
- port: 9093
- protocol: TCP
- targetPort: web
- selector:
- alertmanager: longhorn
创建上述服务后,您可以通过节点的 IP 和端口 30903 访问 Alertmanager 的 web UI。
使用上面的 NodePort 服务进行快速验证,因为它不通过 TLS 连接进行通信。您可能希望将服务类型更改为 ClusterIP,并设置一个 Ingress-controller 以通过 TLS 连接公开 Alertmanager 的 web UI。
安装和配置 Prometheus server
创建定义警报条件的 PrometheusRule 自定义资源。
- apiVersion: monitoring.coreos.com/v1
- kind: PrometheusRule
- metadata:
- labels:
- prometheus: longhorn
- role: alert-rules
- name: prometheus-longhorn-rules
- namespace: monitoring
- spec:
- groups:
- - name: longhorn.rules
- rules:
- - alert: LonghornVolumeUsageCritical
- annotations:
- description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is at {{$value}}% used for
- more than 5 minutes.
- summary: Longhorn volume capacity is over 90% used.
- expr: 100 * (longhorn_volume_usage_bytes / longhorn_volume_capacity_bytes) > 90
- for: 5m
- labels:
- issue: Longhorn volume {{$labels.volume}} usage on {{$labels.node}} is critical.
- severity: critical
有关如何定义警报规则的更多信息,请参见https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules
如果激活了 RBAC 授权,则为 Prometheus Pod 创建 ClusterRole 和 ClusterRoleBinding:
- apiVersion: v1
- kind: ServiceAccount
- metadata:
- name: prometheus
- namespace: monitoring
- apiVersion: rbac.authorization.k8s.io/v1beta1
- kind: ClusterRole
- metadata:
- name: prometheus
- namespace: monitoring
- rules:
- - apiGroups: [""]
- resources:
- - nodes
- - services
- - endpoints
- - pods
- verbs: ["get", "list", "watch"]
- - apiGroups: [""]
- resources:
- - configmaps
- verbs: ["get"]
- - nonResourceURLs: ["/metrics"]
- verbs: ["get"]
- apiVersion: rbac.authorization.k8s.io/v1beta1
- kind: ClusterRoleBinding
- metadata:
- name: prometheus
- roleRef:
- apiGroup: rbac.authorization.k8s.io
- kind: ClusterRole
- name: prometheus
- subjects:
- - kind: ServiceAccount
- name: prometheus
- namespace: monitoring
创建 Prometheus 自定义资源。请注意,我们在 spec 中选择了 Longhorn 服务监视器(service monitor)和 Longhorn 规则。
- apiVersion: monitoring.coreos.com/v1
- kind: Prometheus
- metadata:
- name: prometheus
- namespace: monitoring
- spec:
- replicas: 2
- serviceAccountName: prometheus
- alerting:
- alertmanagers:
- - namespace: monitoring
- name: alertmanager-longhorn
- port: web
- serviceMonitorSelector:
- matchLabels:
- name: longhorn-prometheus-servicemonitor
- ruleSelector:
- matchLabels:
- prometheus: longhorn
- role: alert-rules
为了能够查看 Prometheus 服务器的 web UI,请通过 Service 公开它。一个简单的方法是使用 NodePort 类型的 Service:
- apiVersion: v1
- kind: Service
- metadata:
- name: prometheus
- namespace: monitoring
- spec:
- type: NodePort
- ports:
- - name: web
- nodePort: 30904
- port: 9090
- protocol: TCP
- targetPort: web
- selector:
- prometheus: prometheus
创建上述服务后,您可以通过节点的 IP 和端口 30904 访问 Prometheus server 的 web UI。
此时,您应该能够在 Prometheus server UI 的目标和规则部分看到所有 Longhorn manager targets 以及 Longhorn rules。
使用上述 NodePort service 进行快速验证,因为它不通过 TLS 连接进行通信。您可能希望将服务类型更改为 ClusterIP,并设置一个 Ingress-controller 以通过 TLS 连接公开 Prometheus server 的 web UI。
安装 Grafana
创建 Grafana 数据源配置:
- apiVersion: v1
- kind: ConfigMap
- metadata:
- name: grafana-datasources
- namespace: monitoring
- data:
- prometheus.yaml: |-
- {
- "apiVersion": 1,
- "datasources": [
- {
- "access":"proxy",
- "editable": true,
- "name": "prometheus",
- "orgId": 1,
- "type": "prometheus",
- "url": "http://prometheus:9090",
- "version": 1
- }
- ]
- }
创建 Grafana 部署:
- apiVersion: apps/v1
- kind: Deployment
- metadata:
- name: grafana
- namespace: monitoring
- labels:
- app: grafana
- spec:
- replicas: 1
- selector:
- matchLabels:
- app: grafana
- template:
- metadata:
- name: grafana
- labels:
- app: grafana
- spec:
- containers:
- - name: grafana
- image: grafana/grafana:7.1.5
- ports:
- - name: grafana
- containerPort: 3000
- resources:
- limits:
- memory: "500Mi"
- cpu: "300m"
- requests:
- memory: "500Mi"
- cpu: "200m"
- volumeMounts:
- - mountPath: /var/lib/grafana
- name: grafana-storage
- - mountPath: /etc/grafana/provisioning/datasources
- name: grafana-datasources
- readOnly: false
- volumes:
- - name: grafana-storage
- emptyDir: {}
- - name: grafana-datasources
- configMap:
- defaultMode: 420
- name: grafana-datasources
在 NodePort 32000 上暴露 Grafana:
- apiVersion: v1
- kind: Service
- metadata:
- name: grafana
- namespace: monitoring
- spec:
- selector:
- app: grafana
- type: NodePort
- ports:
- - port: 3000
- targetPort: 3000
- nodePort: 32000
使用上述 NodePort 服务进行快速验证,因为它不通过 TLS 连接进行通信。您可能希望将服务类型更改为 ClusterIP,并设置一个 Ingress-controller 以通过 TLS 连接公开 Grafana。
使用端口 32000 上的任何节点 IP 访问 Grafana 仪表板。默认凭据为:
- User: admin
- Pass: admin
安装 Longhorn dashboard
进入 Grafana 后,导入预置的面板:https://grafana.com/grafana/dashboards/13032
有关如何导入 Grafana dashboard 的说明,请参阅 https://grafana.com/docs/grafana/latest/reference/export_import/
成功后,您应该会看到以下 dashboard:
将 Longhorn 指标集成到 Rancher 监控系统中
关于 Rancher 监控系统
使用 Rancher,您可以通过与领先的开源监控解决方案 Prometheus 的集成来监控集群节点、Kubernetes 组件和软件部署的状态和进程。
有关如何部署/启用 Rancher 监控系统的说明,请参见https://rancher.com/docs/rancher/v2.x/en/monitoring-alerting/
将 Longhorn 指标添加到 Rancher 监控系统
如果您使用 Rancher 来管理您的 Kubernetes 并且已经启用 Rancher 监控,您可以通过简单地部署以下 ServiceMonitor 将 Longhorn 指标添加到 Rancher 监控中:
- apiVersion: monitoring.coreos.com/v1
- kind: ServiceMonitor
- metadata:
- name: longhorn-prometheus-servicemonitor
- namespace: longhorn-system
- labels:
- name: longhorn-prometheus-servicemonitor
- spec:
- selector:
- matchLabels:
- app: longhorn-manager
- namespaceSelector:
- matchNames:
- - longhorn-system
- endpoints:
- - port: manager
创建 ServiceMonitor 后,Rancher 将自动发现所有 Longhorn 指标。
然后,您可以设置 Grafana 仪表板以进行可视化。
Longhorn 监控指标
Volume(卷)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_volume_actual_size_bytes | 对应节点上卷的每个副本使用的实际空间 | longhorn_volume_actual_size_bytes{node="worker-2",volume="testvol"} 1.1917312e+08 |
longhorn_volume_capacity_bytes | 此卷的配置大小(以 byte 为单位) | longhorn_volume_capacity_bytes{node="worker-2",volume="testvol"} 6.442450944e+09 |
longhorn_volume_state | 本卷状态:1=creating, 2=attached, 3=Detached, 4=Attaching, 5=Detaching, 6=Deleting | longhorn_volume_state{node="worker-2",volume="testvol"} 2 |
longhorn_volume_robustness | 本卷的健壮性: 0=unknown, 1=healthy, 2=degraded, 3=faulted | longhorn_volume_robustness{node="worker-2",volume="testvol"} 1 |
Node(节点)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_node_status | 该节点的状态:1=true, 0=false | longhorn_node_status{condition="ready",condition_reason="",node="worker-2"} 1 |
longhorn_node_count_total | Longhorn 系统中的节点总数 | longhorn_node_count_total 4 |
longhorn_node_cpu_capacity_millicpu | 此节点上的最大可分配 CPU | longhorn_node_cpu_capacity_millicpu{node="worker-2"} 2000 |
longhorn_node_cpu_usage_millicpu | 此节点上的 CPU 使用率 | longhorn_node_cpu_usage_millicpu{node="pworker-2"} 186 |
longhorn_node_memory_capacity_bytes | 此节点上的最大可分配内存 | longhorn_node_memory_capacity_bytes{node="worker-2"} 4.031229952e+09 |
longhorn_node_memory_usage_bytes | 此节点上的内存使用情况 | longhorn_node_memory_usage_bytes{node="worker-2"} 1.833582592e+09 |
longhorn_node_storage_capacity_bytes | 本节点的存储容量 | longhorn_node_storage_capacity_bytes{node="worker-3"} 8.3987283968e+10 |
longhorn_node_storage_usage_bytes | 该节点的已用存储 | longhorn_node_storage_usage_bytes{node="worker-3"} 9.060941824e+09 |
longhorn_node_storage_reservation_bytes | 此节点上为其他应用程序和系统保留的存储空间 | longhorn_node_storage_reservation_bytes{node="worker-3"} 2.519618519e+10 |
Disk(磁盘)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_disk_capacity_bytes | 此磁盘的存储容量 | longhorn_disk_capacity_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 8.3987283968e+10 |
longhorn_disk_usage_bytes | 此磁盘的已用存储空间 | longhorn_disk_usage_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 9.060941824e+09 |
longhorn_disk_reservation_bytes | 此磁盘上为其他应用程序和系统保留的存储空间 | longhorn_disk_reservation_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 2.519618519e+10 |
Instance Manager(实例管理器)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_instance_manager_cpu_usage_millicpu | 这个 longhorn 实例管理器的 CPU 使用率 | longhorn_instance_manager_cpu_usage_millicpu{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 80 |
longhorn_instance_manager_cpu_requests_millicpu | 在这个 Longhorn 实例管理器的 kubernetes 中请求的 CPU 资源 | longhorn_instance_manager_cpu_requests_millicpu{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 250 |
longhorn_instance_manager_memory_usage_bytes | 这个 longhorn 实例管理器的内存使用情况 | longhorn_instance_manager_memory_usage_bytes{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 2.4072192e+07 |
longhorn_instance_manager_memory_requests_bytes | 这个 longhorn 实例管理器在 Kubernetes 中请求的内存 | longhorn_instance_manager_memory_requests_bytes{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 0 |
Manager(管理器)
指标名 | 说明 | 示例 |
---|---|---|
longhorn_manager_cpu_usage_millicpu | 这个 Longhorn Manager 的 CPU 使用率 | longhorn_manager_cpu_usage_millicpu{manager="longhorn-manager-5rx2n",node="worker-2"} 27 |
longhorn_manager_memory_usage_bytes | 这个 Longhorn Manager 的内存使用情况 | longhorn_manager_memory_usage_bytes{manager="longhorn-manager-5rx2n",node="worker-2"} 2.6144768e+07 |
支持 Kubelet Volume 指标
关于 Kubelet Volume 指标
Kubelet 公开了以下指标:
- kubelet_volume_stats_capacity_bytes
- kubelet_volume_stats_available_bytes
- kubelet_volume_stats_used_bytes
- kubelet_volume_stats_inodes
- kubelet_volume_stats_inodes_free
- kubelet_volume_stats_inodes_used
这些指标衡量与 Longhorn 块设备内的 PVC 文件系统相关的信息。
它们与 longhorn_volume_* 指标不同,后者测量特定于 Longhorn 块设备(block device)的信息。
您可以设置一个监控系统来抓取 Kubelet 指标端点以获取 PVC 的状态并设置异常事件的警报,例如 PVC 即将耗尽存储空间。
一个流行的监控设置是 prometheus-operator/kube-prometheus-stack,,它抓取 kubelet_volume_stats_* 指标并为它们提供仪表板和警报规则。
Longhorn CSI 插件支持
在 v1.1.0 中,Longhorn CSI 插件根据 CSI spec 支持 NodeGetVolumeStats RPC。
这允许 kubelet 查询 Longhorn CSI 插件以获取 PVC 的状态。
然后 kubelet 在 kubelet_volume_stats_* 指标中公开该信息。
Longhorn 警报规则示例
我们在下面提供了几个示例 Longhorn 警报规则供您参考。请参阅此处获取所有可用 Longhorn 指标的列表并构建您自己的警报规则。
- apiVersion: monitoring.coreos.com/v1
- kind: PrometheusRule
- metadata:
- labels:
- prometheus: longhorn
- role: alert-rules
- name: prometheus-longhorn-rules
- namespace: monitoring
- spec:
- groups:
- - name: longhorn.rules
- rules:
- - alert: LonghornVolumeActualSpaceUsedWarning
- annotations:
- description: The actual space used by Longhorn volume {{$labels.volume}} on {{$labels.node}} is at {{$value}}% capacity for
- more than 5 minutes.
- summary: The actual used space of Longhorn volume is over 90% of the capacity.
- expr: (longhorn_volume_actual_size_bytes / longhorn_volume_capacity_bytes) * 100 > 90
- for: 5m
- labels:
- issue: The actual used space of Longhorn volume {{$labels.volume}} on {{$labels.node}} is high.
- severity: warning
- - alert: LonghornVolumeStatusCritical
- annotations:
- description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is Fault for
- more than 2 minutes.
- summary: Longhorn volume {{$labels.volume}} is Fault
- expr: longhorn_volume_robustness == 3
- for: 5m
- labels:
- issue: Longhorn volume {{$labels.volume}} is Fault.
- severity: critical
- - alert: LonghornVolumeStatusWarning
- annotations:
- description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is Degraded for
- more than 5 minutes.
- summary: Longhorn volume {{$labels.volume}} is Degraded
- expr: longhorn_volume_robustness == 2
- for: 5m
- labels:
- issue: Longhorn volume {{$labels.volume}} is Degraded.
- severity: warning
- - alert: LonghornNodeStorageWarning
- annotations:
- description: The used storage of node {{$labels.node}} is at {{$value}}% capacity for
- more than 5 minutes.
- summary: The used storage of node is over 70% of the capacity.
- expr: (longhorn_node_storage_usage_bytes / longhorn_node_storage_capacity_bytes) * 100 > 70
- for: 5m
- labels:
- issue: The used storage of node {{$labels.node}} is high.
- severity: warning
- - alert: LonghornDiskStorageWarning
- annotations:
- description: The used storage of disk {{$labels.disk}} on node {{$labels.node}} is at {{$value}}% capacity for
- more than 5 minutes.
- summary: The used storage of disk is over 70% of the capacity.
- expr: (longhorn_disk_usage_bytes / longhorn_disk_capacity_bytes) * 100 > 70
- for: 5m
- labels:
- issue: The used storage of disk {{$labels.disk}} on node {{$labels.node}} is high.
- severity: warning
- - alert: LonghornNodeDown
- annotations:
- description: There are {{$value}} Longhorn nodes which have been offline for more than 5 minutes.
- summary: Longhorn nodes is offline
- expr: longhorn_node_total - (count(longhorn_node_status{condition="ready"}==1) OR on() vector(0))
- for: 5m
- labels:
- issue: There are {{$value}} Longhorn nodes are offline
- severity: critical
- - alert: LonghornIntanceManagerCPUUsageWarning
- annotations:
- description: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} has CPU Usage / CPU request is {{$value}}% for
- more than 5 minutes.
- summary: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} has CPU Usage / CPU request is over 300%.
- expr: (longhorn_instance_manager_cpu_usage_millicpu/longhorn_instance_manager_cpu_requests_millicpu) * 100 > 300
- for: 5m
- labels:
- issue: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} consumes 3 times the CPU request.
- severity: warning
- - alert: LonghornNodeCPUUsageWarning
- annotations:
- description: Longhorn node {{$labels.node}} has CPU Usage / CPU capacity is {{$value}}% for
- more than 5 minutes.
- summary: Longhorn node {{$labels.node}} experiences high CPU pressure for more than 5m.
- expr: (longhorn_node_cpu_usage_millicpu / longhorn_node_cpu_capacity_millicpu) * 100 > 90
- for: 5m
- labels:
- issue: Longhorn node {{$labels.node}} experiences high CPU pressure.
- severity: warning
在https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules 查看有关如何定义警报规则的更多信息。