AI人工智能走出实验室,走进生产车间,依然面临着巨大挑战

人工智能
今天世超要给你们介绍的小程序有点厉害了。实不相瞒,在世超没接触这个名为 “ HiPC ” 的微信小程序前,我根本不知道一个微信小程序竟然能实现这么多功能,它能做的事情甚至已经超过了很多软件。

国内企业AI落地现状

根据埃森哲《中国企业人工智能应用之道》面对全球企业高管的调研显示:高达79%的中国企业高管认为,他们必须借助人工智能来实现业务增长目标。

但其中,有52%的中国企业高管人员坦言,人工智能试点容易,但当设法将人工智能推广至全企业时,难度较大。

高质量数据缺乏、行业壁垒高、应用场景不清晰是当前人工智能与行业深度融合的主要瓶颈,应用场景难融合也意味着AI企业落地难。

①我国人力资源充裕,很多传统行业的数字化意愿并不强烈。到了AI时代,企业的数据基础不扎实,也就难以承载起上层的智能化转型。

②如今算力需求呈现指数级增长,而无论是算力设备的购置费用还是技术人员对算法优化的时间、人员和金钱的巨大投入。

④数据是制约AI成功落地的一大因素。如果缺少统一、标准化、高质量的数据,AI应用可能就是无米之炊、无源之水。

AI让企业开始习惯于大量依赖机器帮忙做决策。在这个过程中会带来隐私保护、AI可信度、伦理和社会的问题等,这些都是AI在落地过程中需要解决的。

大多数企业的AI创新都是点状的、实验性质的、局部的创新,缺少规模化、商业化、运行态的布局。

因此,人工智能在互联网领域的攻城掠地有多顺利,在实体经济中的落地就有多困难。

 

 

[[417980]]

AI落地的行业场景化应用

各行业当下面临的痛点有所不同,如金融行业面临成本压力、产品服务单一、交易欺诈等;医疗与教育行业资源分配不均的问题突出;

也就是说,人工智能需求广阔,其商业模式是渗透到各行各业,提高行业效率。这一进程需要时间和持续投入,但也是生产力迭代趋势。

未来还是要结合场景和用户体验去重新设计,用 AI 本身的方式思考,才会产生真正的 AI 应用。

未来,可以肯定的是人工智能将能够在特定领域实现快速突破,而企业需要从自身所处的商业、工业和生存环境中选择恰当的角度,去定义特定场景,从而让人工智能可以针对性突破并解决问题。

[[417981]]

目前AI技术正处于普及爆发的前夜

2018年,AI领域投资事件共410起,投资总额1078亿元。人工智能逐渐挤满了几乎中国所有的主流投资机构和产业资本。

资本华丽登台的另一面是,AI落地的过程不太优美。数据显示,2017年,90%以上AI企业处于亏损阶段,商业化落地成为众多人工智能企业发展的痛点。

AI将成为未来企业发展的一个必选项和企业的关键竞争力,这是毋庸置疑的。

对于各个公司、行业和国家来说,人工智能将是未来几十年里最大的商业机会。

预计从现在到2030年,人工智能的发展将使全球GDP增长14%,相当于对世界经济额外贡献了15.7万亿美元,其中AI将带动中国GDP增加7万亿美元。

[[417982]]

商业落地呼唤标准配套

只有把应用做起来,底层AI芯片、软件技术才能够在应用过程中更扎实。

人工智能端到端完成一个项目落地至少需要3—6个月的时间,整个过程存在一定的复杂性,需要有一系列选型方案的指南。

以前产业界更侧重于算法,近几年算法开始和工程开源齐头并进,业内越来越重视软硬件协同发展,人工智能与大数据、云计算等新型信息技术融合越来越深入。

今年7月发布的《人工智能标准化白皮书(2021版)》中指出,深度学习框架依赖的生态建设、测试体系不够全面是我国人工智能产业发展目前遇到的两大问题。

我国深度学习框架起步较晚,在算法、芯片、终端和场景应用方面尚未摆脱对国外深度学习框架的依赖。

然而,国内人工智能测试体系尚未形成,现有测试基准的测试内容和模型高度重复,还未形成成熟的功能、性能测试基准,这将制约人工智能产品打开市场、获得市场信任度。

[[417983]]

国内AI标准化进程加速

规范标准也是国内人工智能现阶段发展的关键词之一。赛迪顾问统计数据显示,2019年,中国人工智能产业规模达到1291.4亿元,同比增速为30.8%。

预计到2022年,中国人工智能产业规模达到2621.5亿元。

国内人工智能产业高速发展,场景应用逐渐丰富化,随着产业复杂度的提高,相关标准也亟待解决配套问题。

在2020年7月印发了《国家新一代人工智能标准体系建设指南》;同年12月,智用研究院、百度、浪潮联合发布面向产业应用的人工智能开源评测基准AI-Rank。

[[417984]]

人工智能技术落地的关键环节

①技术的突破:一家成功的人工智能公司必须有一定的技术积累和壁垒。

②场景的探索:找到一个商业上可行、可拓展性良好,并且技术上可实现的场景是非常困难的,很多优秀的技术公司都在这个环节投入了大量的精力。

③团队的建设和成长:起步阶段顶尖的技术和商业团队的搭建需要大量工作,快速成长的过程中人员不断扩充也会带来各种问题,如何增效降本、保持创新风气很关键。

 

④标准制定:对具体行业具体场景下的人工智能技术应用进行规范化、标准化,保证整个行业的生态健康发展。

 

责任编辑:庞桂玉 来源: 搜狐
相关推荐

2020-07-07 16:53:40

IIoTAI工业物联网

2023-03-14 14:28:28

Omdia

2020-07-24 10:10:12

IBM人工智能NLP

2017-10-12 15:51:14

AI人工智能

2021-10-20 10:38:44

人工智能数据技术

2021-08-18 09:38:51

人工智能AI机器学习

2017-12-11 13:05:27

2013-04-07 09:38:00

HPC硬件HPC高性能计算

2017-12-11 17:49:26

AI

2022-01-10 09:47:34

5G运营商电信

2019-09-12 15:03:44

2019-05-16 08:00:00

人工智能AI智能数字助手

2022-07-29 11:52:12

人工智能智能设备硬件

2023-08-15 12:34:27

2017-04-16 17:41:43

人工智能

2017-05-05 16:10:39

滴滴出行斯坦福人工智能

2021-03-03 11:19:34

人工智能预算AI

2014-08-20 10:29:47

Facebook人工智能

2018-06-11 11:48:38

阿里巴巴智能音箱AI
点赞
收藏

51CTO技术栈公众号