深入理解Linux内核之进程睡眠(下)

系统 Linux
进程睡眠按照应用场景可以分为:延迟睡眠和等待某些特定条件而睡眠,实际上都可以归于等待某些特定条件而睡眠,因为延迟特定时间也可以作为特定条件。

[[412976]]

本文转载自微信公众号「Linux内核远航者」,作者Linux内核远航者。转载本文请联系Linux内核远航者公众号。

4.用户态睡眠

以sleep为例来说明任务在用户态是如何睡眠的。

首先我们通过strace工具来看下其调用的系统调用:

  1. $ strace sleep 1 
  2.  
  3. ... 
  4. close(3)                                = 0 
  5. clock_nanosleep(CLOCK_REALTIME, 0, {tv_sec=1, tv_nsec=0}, NULL) = 0 
  6. close(1)                                = 0 
  7. ... 

可以发现sleep主要调用clock_nanosleep系统调用来进行睡眠(也就是说用户态任务睡眠需要调用系统调用陷入内核)。

下面我们来研究下clock_nanosleep的实现(这里集中到睡眠的实现,先忽略掉定时器等诸多的技术细节):

  1. kernel/time/posix-timers.c 
  2.  
  3. SYSCALL_DEFINE4(clock_nanosleep 
  4. ->const struct k_clock *kc = clockid_to_kclock(which_clock);  //根据时钟类型得到内核时钟结构 
  5.     return kc->nsleep(which_clock, flags, &t); //调用内核时钟结构的nsleep回调 

我们传递过来的时钟类型为CLOCK_REALTIME,则调用链为:

  1. kc->nsleep(CLOCK_REALTIME, flags, &t) 
  2. ->clock_realtime.nsleep 
  3.     ->common_nsleep 
  4.         ->hrtimer_nanosleep  //kernel/time/hrtimer.c 
  5.             ->hrtimer_init_sleeper_on_stack 
  6.                     ->__hrtimer_init_sleeper 
  7.                         ->__hrtimer_init(&sl->timer, clock_id, mode); //初始化高精度定时器 
  8.                             sl->timer.function = hrtimer_wakeup;  //设置超时回调函数 
  9.                             sl->task = current;.//设置超时时要唤醒的任务 
  10.                      ->do_nanosleep  //睡眠操作 

可以看到,睡眠函数最终调用到hrtimer_nanosleep,它调用了两个主要函数:__hrtimer_init_sleeper和do_nanosleep,前者主要设置高精度定时器,后者就是真正的睡眠,主要来看下 do_nanosleep:

  1. kernel/time/hrtimer.c 
  2.  do_nanosleep 
  3.  -> 
  4.          do { 
  5.                  set_current_state(TASK_INTERRUPTIBLE);  //设置可中断的睡眠状态 
  6.                  hrtimer_sleeper_start_expires(t, mode); //开启高精度定时器 
  7.  
  8.                  if (likely(t->task)) 
  9.                          freezable_schedule(); //主动调度 
  10.                     
  11.  
  12.                  hrtimer_cancel(&t->timer); 
  13.                  mode = HRTIMER_MODE_ABS; 
  14.  
  15.          } while (t->task && !signal_pending(current));  //是否记录的有任务且没有挂起的信号 
  16.  
  17.          __set_current_state(TASK_RUNNING);  //设置为可运行状态 

do_nanosleep函数是睡眠的核心实现:首先设置任务的状态为可中断的睡眠状态,然后开启了之前设置的高精度定时器,随即调用freezable_schedule进行真正的睡眠。

来看下freezable_schedule:

  1. //include/linux/freezer.h 
  2. freezable_schedule 
  3. ->schedule() 
  4.     ->__schedule(false);  
  5.   

可以看到最终调用主调度器__schedule进行主动调度。

当任务睡眠完成,定时器超时,会调用之前在__hrtimer_init_sleeper设置的超时回调函数hrtimer_wakeup将睡眠的任务唤醒(关于进程唤醒在这里就不在赘述,在后面的进程唤醒专题文章在进行详细解读),然后就可以再次获得处理器的使用权了。

总结:处于用户态的任务,如果想要睡眠一段时间必须向内核请求服务(如调用clock_nanosleep系统调用),内核中会设置一个高精度定时器,来记录要睡眠的任务,然后设置任务状态为可中断的睡眠状态,紧接着发生主动调度,这样任务就发生睡眠了。

5.内核态睡眠

当任务处于内核态时,有时候也需要睡眠一段时间,不像任务处于用户态需要发生系统调用来请求内核进行睡眠,在内核态可以直接调用睡眠函数。当然,内核态中,睡眠有两种场景:一种是睡眠特定的时间的延迟操作(唤醒条件为超时),一种是等待特定条件满足(如IO读写完成,可睡眠的锁被释放等)。

下面分别以msleep和mutex锁为例讲解内核态睡眠:

5.1 msleep

msleep做ms级别的睡眠延迟。

  1. //kernel/time/timer.c 
  2. void msleep(unsigned int msecs) 
  3.         unsigned long timeout = msecs_to_jiffies(msecs) + 1;  //ms时间转换为jiffies 
  4.  
  5.         while (timeout) 
  6.                 timeout = schedule_timeout_uninterruptible(timeout);  //不可中断睡眠 

下面看下schedule_timeout_uninterruptible:

这里涉及到一个重要数据结构process_timer

  1. struct process_timer { 
  2.         struct timer_list timer;  //定时器结构 
  3.         struct task_struct *task; //定时器到期要唤醒的任务 
  4. }; 
  1. schedule_timeout_uninterruptible 
  2. ->  __set_current_state(TASK_UNINTERRUPTIBLE);  //设置任务状态为不可中断睡眠 
  3.   return schedule_timeout(timeout);  
  4.     ->expire = timeout + jiffies;   //计算到期时的jiffies值 
  5.         timer.task = current; //记录定时器到期要唤醒的任务 为当前任务 
  6.         timer_setup_on_stack(&timer.timer, process_timeout, 0);  //初始化定时器   超时回调为process_timeout 
  7.         __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); //添加定时器 
  8.         schedule();  //主动调度 

再看下超时回调为process_timeout:

  1. process_timeout 
  2.  ->struct process_timer *timeout = from_timer(timeout, t, timer); //通过定时器结构获得process_timer 
  3.     wake_up_process(timeout->task); //唤醒其管理的任务 

可以看到,msleep实现睡眠也是通过定时器,首先设置当前任务状态为不可中断睡眠,然后设置定时器超时时间为传递的ms级延迟转换的jiffies,超时回调为process_timeout,然后将定时器添加到系统中,最后调用schedule发起主动调度,当定时器超时的时候调用process_timeout来唤醒睡眠的任务。

5.2 mutex锁

mutex锁是可睡眠锁的一种,当申请mutex锁时发现其他内核路径已经持有这把锁,当前任务就会睡眠等待在这把锁上。

下面我们来看他的实现,主要看睡眠的部分:

  1. kernel/locking/mutex.c 
  2.  
  3. mutex_lock 
  4. ->__mutex_lock_slowpath 
  5.     ->__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_)  //睡眠的状态为不可中断睡眠 
  6.         ->__mutex_lock_common 
  7.             -> 
  8.             ... 
  9.             waiter.task = current;  //记录需要唤醒的任务为当前任务 
  10.             set_current_state(state);  //设置睡眠状态 
  11.             for (;;) { 
  12.                  
  13.                      if (__mutex_trylock(lock))  //尝试获得锁 
  14.                          goto acquired; 
  15.  
  16.                     schedule_preempt_disabled();  
  17.                         ->schedule();  //主动调度 
  18.  
  19.             } 
  20.        acquired: 
  21.             __set_current_state(TASK_RUNNING);//设置状态为可运行状态 

可以看到mutex锁实现睡眠套路和之前是一样的:申请mutex锁的时候,如果其他内核路径已经持有这把锁,首先通过mutex锁的相关结构来记录下当前任务,然后设置任务状态为不可中断睡眠,接着在一个for循环中调用schedule_preempt_disabled发生主动调度,于是当前任务就睡眠在这把锁上。当其他内核路径释放了这把锁,就会唤醒等待在这把锁上的任务,当前任务就获得了这把锁,然后进入锁的临界区,唤醒操作就完成了(关于唤醒的技术细节,后面的唤醒专题会详细讲解)。

6.总结

进程睡眠按照应用场景可以分为:延迟睡眠和等待某些特定条件而睡眠,实际上都可以归于等待某些特定条件而睡眠,因为延迟特定时间也可以作为特定条件。进程睡眠按照进程所处的特权级别可以分为:用户态进程睡眠和内核态进程睡眠,用户态进程睡眠需要进程通过系统调用陷入内核来发起睡眠请求。对于进程睡眠,内核主要需要做三大步操作:1.设置任务状态为睡眠状态 2.记录睡眠的任务 3.发起主动调度。这三大步操作都是非常有必要,第一步设置睡眠状态为后面调用主调度器做必要的标识准备;第二步记录下睡眠的任务是为了以后唤醒任务来准备的;第三步是睡眠的主体部分,这里会将睡眠的任务从运行队列中踢出,选择下一个任务运行。

 

责任编辑:武晓燕 来源: Linux内核远航者
相关推荐

2021-07-20 08:02:41

Linux进程睡眠

2021-12-09 08:09:31

Linux内核脏页

2021-05-19 07:56:26

Linux内核抢占

2022-11-09 08:12:07

2021-07-05 06:51:45

Linux内核调度器

2020-09-28 08:44:17

Linux内核

2017-01-12 19:34:58

2021-02-17 11:25:33

前端JavaScriptthis

2021-07-02 06:54:44

Linux内核主调度器

2023-02-10 08:11:43

Linux系统调用

2022-09-05 22:22:00

Stream操作对象

2019-03-18 09:50:44

Nginx架构服务器

2014-12-04 14:01:54

openstacknetworkneutron

2018-12-27 12:34:42

HadoopHDFS分布式系统

2015-09-17 10:51:35

修改hostnameLinux

2021-08-31 10:32:11

LinuxPage Cache命令

2013-06-20 10:25:56

2020-07-21 08:26:08

SpringSecurity过滤器

2016-12-08 15:36:59

HashMap数据结构hash函数

2010-06-01 15:25:27

JavaCLASSPATH
点赞
收藏

51CTO技术栈公众号