从操作系统层面分析 Java IO 演进之路

开发
本文从操作系统实际调用角度(以CentOS Linux release 7.5操作系统为示例),力求追根溯源看IO的每一步操作到底发生了什么。

 [[408648]]

前言

本文从操作系统实际调用角度(以CentOS Linux release 7.5操作系统为示例),力求追根溯源看IO的每一步操作到底发生了什么。

关于如何查看系统调用,Linux可以使用 strace 来查看任何软件的系统调动(这是个很好的分析学习方法):strace -ff -o ./out java TestJava

一 BIO

  1. /** * Alipay.com Inc. Copyright (c) 2004-2020 All Rights Reserved. */package io; import java.io.*;import java.net.ServerSocket;import java.net.Socket;/** * @author xiangyong.ding * @version $Id: TestSocket.java, v 0.1 2020年08月02日 20:56 xiangyong.ding Exp $ */public class BIOSocket { public static void main(String[] args) throws IOException { ServerSocket serverSocket = new ServerSocket(8090); System.out.println("step1: new ServerSocket "); while (true) { Socket client = serverSocket.accept(); System.out.println("step2: client\t" + client.getPort()); new Thread(() -> { try { InputStream in = client.getInputStream(); BufferedReader reader = new BufferedReader(new InputStreamReader(in)); while (true) { System.out.println(reader.readLine()); } } catch (IOException e) { e.printStackTrace(); } }).start(); } }} 

1 发生的系统调用

启动时

socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 5bind(5, {sa_family=AF_INET, sin_port=htons(8090), sin_addr=inet_addr("0.0.0.0")}, 16) = 0listen(5, 50) = 0poll([{fd=5, events=POLLIN|POLLERR}], 1, -1) = 1 ([{fd=5, revents=POLLIN}])
poll函数会阻塞直到其中任何一个fd发生事件。

有客户端连接后

  1. accept(5, {sa_family=AF_INET, sin_port=htons(10253), sin_addr=inet_addr("42.120.74.252")}, [16]) = 6clone(child_stack=0x7f013e5c4fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7f013e5c59d0, tls=0x7f013e5c5700, child_tidptr=0x7f013e5c59d0) = 13168poll([{fd=5, events=POLLIN|POLLERR}], 1, -1 

抛出线程(即我们代码里的 new Thread() )后,继续poll阻塞等待连接。

clone出来的线程

recvfrom(6, "hello,bio\n", 8192, 0, NULL, NULL) =
关于对recvfrom函数的说明,其中第四个参数0 表示这是一个阻塞调用。

客户端发送数据后

recvfrom(6, "hello,bio\n", 8192, 0, NULL, NULL) = 10

2 优缺点

优点

代码简单,逻辑清晰。

缺点

由于stream的read操作是阻塞读,面对多个连接时 每个连接需要每线程。无法处理大量连接(C10K问题)。

误区:可见JDK1.8中对于最初的BIO,在Linux OS下仍然使用的poll,poll本身也是相对比较高效的多路复用函数(支持非阻塞、多个socket同时检查event),只是限于JDK最初的stream API限制,无法支持非阻塞读取。

二 NIO(non block)

改进:使用NIO API,将阻塞变为非阻塞, 不需要大量线程。

  1. /** * Alipay.com Inc. Copyright (c) 2004-2020 All Rights Reserved. */package io;import java.io.IOException;import java.net.InetSocketAddress;import java.nio.ByteBuffer;import java.nio.channels.ServerSocketChannel;import java.nio.channels.SocketChannel;import java.util.LinkedList;/** * @author xiangyong.ding * @version $Id: NioSocket.java, v 0.1 2020年08月09日 11:25 xiangyong.ding Exp $ */public class NIOSocket { private static LinkedList< SocketChannel> clients = new LinkedList<>(); private static void startClientChannelHandleThread(){ new Thread(() -> { while (true){ ByteBuffer buffer = ByteBuffer.allocateDirect(4096); //处理客户端连接 for (SocketChannel c : clients) { // 非阻塞, >0 表示读取到的字节数量, 0或-1表示未读取到或读取异常 int num = 0; try { num = c.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (num > 0) { buffer.flip(); byte[] clientBytes = new byte[buffer.limit()]; //从缓冲区 读取到内存中 buffer.get(clientBytes); System.out.println(c.socket().getPort() + ":" + new String(clientBytes)); //清空缓冲区 buffer.clear(); } } } }).start(); } public static void main(String[] args) throws IOException { //new socket,开启监听 ServerSocketChannel socketChannel = ServerSocketChannel.open(); socketChannel.bind(new InetSocketAddress(9090)); //设置阻塞接受客户端连接 socketChannel.configureBlocking(true); //开始client处理线程 startClientChannelHandleThread(); while (true) { //接受客户端连接; 非阻塞,无客户端返回null(操作系统返回-1) SocketChannel client = socketChannel.accept(); if (client == null) { //System.out.println("no client"); } else { //设置读非阻塞 client.configureBlocking(false); int port = client.socket().getPort(); System.out.println("client port :" + port); clients.add(client); } } }} 

1 发生的系统调用

主线程

  1. socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 4bind(4, {sa_family=AF_INET, sin_port=htons(9090), sin_addr=inet_addr("0.0.0.0")}, 16) = 0listen(450) = 0fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0accept(40x7fe26414e6800x7fe26c376710) = -1 EAGAIN (Resource temporarily unavailable) 

有连接后,子线程

  1. read(60x7f3f415b1c504096) = -1 EAGAIN (Resource temporarily unavailable)read(60x7f3f415b1c504096) = -1 EAGAIN (Resource temporarily unavailable)... 

资源使用情况:

2 优缺点

优点

线程数大大减少。

缺点

需要程序自己扫描 每个连接read,需要 O(n)时间复杂度系统调用 (此时可能只有一个连接发送了数据),高频系统调用(导致CPU 用户态内核态切换)高。导致CPU消耗很高。

三 多路复用器(select、poll、epoll)

改进:不需要用户扫描所有连接,由kernel 给出哪些连接有数据,然后应用从有数据的连接读取数据。

1 epoll

  1. import java.net.InetSocketAddress;import java.nio.ByteBuffer;import java.nio.channels.SelectionKey;import java.nio.channels.Selector;import java.nio.channels.ServerSocketChannel;import java.nio.channels.SocketChannel;import java.util.Iterator;import java.util.LinkedList;import java.util.Set;/** * 多路复用socket * * @author xiangyong.ding * @version $Id: MultiplexingSocket.java, v 0.1 2020年08月09日 12:19 xiangyong.ding Exp $ */public class MultiplexingSocket { static ByteBuffer buffer = ByteBuffer.allocateDirect(4096); public static void main(String[] args) throws Exception { LinkedList< SocketChannel> clients = new LinkedList<>(); //1.启动server //new socket,开启监听 ServerSocketChannel socketChannel = ServerSocketChannel.open(); socketChannel.bind(new InetSocketAddress(9090)); //设置非阻塞,接受客户端 socketChannel.configureBlocking(false); //多路复用器(JDK包装的代理,select /poll/epoll/kqueue) Selector selector = Selector.open(); //java自动代理,默认为epoll //Selector selector = PollSelectorProvider.provider().openSelector();//指定为poll //将服务端socket 注册到 多路复用器 socketChannel.register(selector, SelectionKey.OP_ACCEPT); //2. 轮训多路复用器 // 先询问有没有连接,如果有则返回数量以及对应的对象(fd) while (selector.select() > 0) { System.out.println(); Set< SelectionKey> selectionKeys = selector.selectedKeys(); Iterator< SelectionKey> iter = selectionKeys.iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); iter.remove(); //2.1 处理新的连接 if (key.isAcceptable()) { //接受客户端连接; 非阻塞,无客户端返回null(操作系统返回-1) SocketChannel client = socketChannel.accept(); //设置读非阻塞 client.configureBlocking(false); //同样,把client也注册到selector client.register(selector, SelectionKey.OP_READ); System.out.println("new client : " + client.getRemoteAddress()); } //2.2 处理读取数据 else if (key.isReadable()) { readDataFromSocket(key); } } } } protected static void readDataFromSocket(SelectionKey key) throws Exception { SocketChannel socketChannel = (SocketChannel) key.channel(); // 非阻塞, >0 表示读取到的字节数量, 0或-1表示未读取到或读取异常 // 请注意:这个例子降低复杂度,不考虑报文大于buffer size的情况 int num = socketChannel.read(buffer); if (num > 0) { buffer.flip(); byte[] clientBytes = new byte[buffer.limit()]; //从缓冲区 读取到内存中 buffer.get(clientBytes); System.out.println(socketChannel.socket().getPort() + ":" + new String(clientBytes)); //清空缓冲区 buffer.clear(); } }} 

2 发生的系统调用

启动

  1. socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 4bind(4, {sa_family=AF_INET, sin_port=htons(9090), sin_addr=inet_addr("0.0.0.0")}, 16) = 0listen(450)fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0epoll_create(256) = 7epoll_ctl(7, EPOLL_CTL_ADD, 5, {EPOLLIN, {u32=5, u64=4324783852322029573}}) = 0epoll_ctl(7, EPOLL_CTL_ADD, 4, {EPOLLIN, {u32=4, u64=158913789956}}) = 0epoll_wait(7 

关于对epoll_create(对应着Java的 Selector selector = Selector.open()) 的说明,本质上是在内存的操作系统保留区,创建一个epoll数据结构。用于后面当有client连接时,向该epoll区中添加监听。

有连接

  1. epoll_wait(7,[{EPOLLIN, {u32=4, u64=158913789956}}], 8192, -1) = 1accept(4, {sa_family=AF_INET, sin_port=htons(29597), sin_addr=inet_addr("42.120.74.252")}, [16]) = 8fcntl(8, F_SETFL, O_RDWR|O_NONBLOCK) = 0epoll_ctl(7, EPOLL_CTL_ADD, 8, {EPOLLIN, {u32=8, u64=3212844375897800712}}) = 0 

关于epoll_ctl (对应着Java的 client.register(selector, SelectionKey.OP_READ) )。其中 EPOLLIN 恰好对应着Java的 SelectionKey.OP_READ 即监听数据到达读取事件。

客户端发送数据

  1. epoll_wait(7,[{EPOLLIN, {u32=8, u64=3212844375897800712}}], 8192, -1) = 1read(8"hello,multiplex\n"4096) = 16epoll_wait(7

note:epoll_wait第四个参数-1表示block。

poll 和 epoll 对比

根据“1.BIO”中的poll函数调用和epoll函数对比如下:

poll和epoll本质上都是同步IO, 区别于BIO的是 多路复用充分降低了 system call,而epoll更进一步,再次降低了system call的时间复杂度。

3 优缺点

优点

线程数同样很少,甚至可以把acceptor线程和worker线程使用同一个。
时间复杂度低,Java实现的Selector(在Linux OS下使用的epoll函数)支持多个clientChannel事件的一次性获取,且时间复杂度维持在O(1)。
CPU使用低:得益于Selector,我们不用向 “2.NIO”中需要自己一个个ClientChannel手动去检查事件,因此使得CPU使用率大大降低。

缺点

数据处理麻烦:目前socketChannel.read 读取数据完全是基于字节的,当我们需要需要作为HTTP服务网关时,对于HTTP协议的处理完全需要自己解析,这是个庞大、烦杂、容易出错的工作。
性能现有socket数据的读取(socketChannel.read(buffer))全部通过一个buffer 缓冲区来接受,一旦连接多起来,这无疑是一个单线程读取,性能无疑是个问题。那么此时buffer我们每次读取都重新new出来呢?如果每次都new出来,这样的内存碎片对于GC无疑是一场灾难。如何平衡地协调好buffer的共享,既保证性能,又保证线程安全,这是个难题。

四 Netty

1 研究的目标源码(netty提供的入门example)

TelnetServer

  1. package telnet;import io.netty.bootstrap.ServerBootstrap;import io.netty.channel.EventLoopGroup;import io.netty.channel.nio.NioEventLoopGroup;import io.netty.channel.socket.nio.NioServerSocketChannel;import io.netty.handler.logging.LogLevel;import io.netty.handler.logging.LoggingHandler;import io.netty.handler.ssl.SslContext;import io.netty.handler.ssl.SslContextBuilder;import io.netty.handler.ssl.util.SelfSignedCertificate;/** * Simplistic telnet server. */public final class TelnetServer { static final boolean SSL = System.getProperty("ssl") != nullstatic final int PORT = Integer.parseInt(System.getProperty("port", SSL? "8992" : "8023")); public static void main(String[] args) throws Exception { // Configure SSL. final SslContext sslCtx; if (SSL) { SelfSignedCertificate ssc = new SelfSignedCertificate(); sslCtx = SslContextBuilder.forServer(ssc.certificate(), ssc.privateKey()).build(); } else { sslCtx = null; } EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(); try { ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .handler(new LoggingHandler(LogLevel.INFO)) .childHandler(new TelnetServerInitializer(sslCtx)); b.bind(PORT).sync().channel().closeFuture().sync(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } }} 
  2. TelnetServerHandler 
  3.  
  4. package telnet; 
  5.  
  6. import io.netty.channel.ChannelFuture;import io.netty.channel.ChannelFutureListener;import io.netty.channel.ChannelHandler.Sharable;import io.netty.channel.ChannelHandlerContext;import io.netty.channel.SimpleChannelInboundHandler;import java.net.InetAddress;import java.util.Date;/** * Handles a server-side channel. */@Sharablepublic class TelnetServerHandler extends SimpleChannelInboundHandler< String> { @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { // Send greeting for a new connection. ctx.write("Welcome to " + InetAddress.getLocalHost().getHostName() + "!\r\n"); ctx.write("It is " + new Date() + " now.\r\n"); ctx.flush(); } @Override public void channelRead0(ChannelHandlerContext ctx, String request) throws Exception { // Generate and write a response. String response; boolean close = false; if (request.isEmpty()) { response = "Please type something.\r\n"; } else if ("bye".equals(request.toLowerCase())) { response = "Have a good day!\r\n"; close = true; } else { response = "Did you say '" + request + "'?\r\n"; } // We do not need to write a ChannelBuffer here. // We know the encoder inserted at TelnetPipelineFactory will do the conversion. ChannelFuture future = ctx.write(response); // Close the connection after sending 'Have a good day!' // if the client has sent 'bye'. if (close) { future.addListener(ChannelFutureListener.CLOSE); } } @Override public void channelReadComplete(ChannelHandlerContext ctx) { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { cause.printStackTrace(); ctx.close(); }} 
  7. TelnetServerInitializer 
  8.  
  9. package telnet;import io.netty.channel.ChannelInitializer;import io.netty.channel.ChannelPipeline;import io.netty.channel.socket.SocketChannel;import io.netty.handler.codec.DelimiterBasedFrameDecoder;import io.netty.handler.codec.Delimiters;import io.netty.handler.codec.string.StringDecoder;import io.netty.handler.codec.string.StringEncoder;import io.netty.handler.ssl.SslContext;/** * Creates a newly configured {@link ChannelPipeline} for a new channel. */public class TelnetServerInitializer extends ChannelInitializer< SocketChannel> { private static final StringDecoder DECODER = new StringDecoder(); private static final StringEncoder ENCODER = new StringEncoder(); private static final TelnetServerHandler SERVER_HANDLER = new TelnetServerHandler(); private final SslContext sslCtx; public TelnetServerInitializer(SslContext sslCtx) { this.sslCtx = sslCtx; } @Override public void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); if (sslCtx != null) { pipeline.addLast(sslCtx.newHandler(ch.alloc())); } // Add the text line codec combination first, pipeline.addLast(new DelimiterBasedFrameDecoder(8192, Delimiters.lineDelimiter())); // the encoder and decoder are static as these are sharable pipeline.addLast(DECODER); pipeline.addLast(ENCODER); // and then business logic. pipeline.addLast(SERVER_HANDLER); }} 

2 启动后的系统调用

主线程(23109)

  1. ## 256无实际作用,这里只为了兼容旧版kernel apiepoll_create(256) = 7epoll_ctl(7, EPOLL_CTL_ADD, 5, {EPOLLIN, {u32=5, u64=5477705356928876549}}) = 0epoll_create(256) = 10epoll_ctl(10, EPOLL_CTL_ADD, 8, {EPOLLIN, {u32=8, u64=17041805914081853448}}) = 0epoll_create(256) = 13epoll_ctl(13, EPOLL_CTL_ADD, 11, {EPOLLIN, {u32=11, u64=17042151607409573899}}) = 0epoll_create(256) = 16epoll_ctl(16, EPOLL_CTL_ADD, 14, {EPOLLIN, {u32=14, u64=17042497300737294350}}) = 0epoll_create(256) = 19epoll_ctl(19, EPOLL_CTL_ADD, 17, {EPOLLIN, {u32=17, u64=17042561450368827409}}) = 0epoll_create(256) = 10socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 20clone(child_stack=0x7fc3c509afb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7fc3c509b9d0, tls=0x7fc3c509b700, child_tidptr=0x7fc3c509b9d0) = 23130 

概括为:

向OS新建socket,并开启clone boss线程23130。
为BOSS创建了一个epoll(论证参见下面“boss”),每个worker创建一个epoll数据结构(本质上是在kernel内存区创建了一个数据结构,用于后续监听)。
创建boss线程监听的socket(本质上在kernel中创建一个数据结构)。
boss(23130)

bind(20, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("0.0.0.0")}, 16) = 0listen(20, 128) = 0getsockname(20, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0getsockname(20, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 ##将fd为7号epoll和fd为20号的socket绑定,事件:epoll_ctl_add和epoll_ctl_modepoll_ctl(7, EPOLL_CTL_ADD, 20, {EPOLLIN, {u32=20, u64=14198059139132817428}}) = 0epoll_ctl(7, EPOLL_CTL_MOD, 20, {EPOLLIN, {u32=20, u64=20}}) = 0epoll_wait(7, [{EPOLLIN, {u32=5, u64=17295150779149058053}}], 8192, 1000) = 1epoll_wait(7, [], 8192, 1000) = 0(不断轮训,1S超时一次)

概括为:

将上一步中main线程创建的fd:20绑定端口8023,并开启监听(网卡负责监听和接受连接和数据,kernel则负责路由到具体进程,具体参见:关于socket和bind和listen,TODO )。
将7号socket对应的fd绑定到20号对应的epoll数据结构上去(都是操作kernel中的内存)。
开始1S中一次阻塞等待epoll有任何连接或数据到达。

3 客户端连接

boss (23130)

  1. accept(20, {sa_family=AF_INET, sin_port=htons(11144), sin_addr=inet_addr("42.120.74.122")}, [16]) = 24getsockname(24, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("192.168.0.120")}, [16]) = 0getsockname(24, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("192.168.0.120")}, [16]) = 0setsockopt(24, SOL_TCP, TCP_NODELAY, [1], 4) = 0getsockopt(24, SOL_SOCKET, SO_SNDBUF, [87040], [4]) = 0getsockopt(24, SOL_SOCKET, SO_SNDBUF, [87040], [4]) = 0##抛出 work线程clone(child_stack=0x7fc3c4c98fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7fc3c4c999d0, tls=0x7fc3c4c99700, child_tidptr=0x7fc3c4c999d0) = 2301 
  2. worker (2301
  3.  
  4. writev(24, [{"Welcome to iZbp14e1g9ztpshfrla9m"..., 37}, {"It is Sun Aug 23 15:44:14 CST 20"..., 41}], 2) = 78epoll_ctl(13, EPOLL_CTL_ADD, 24, {EPOLLIN, {u32=24, u64=24}}) = 0epoll_ctl(13, EPOLL_CTL_MOD, 24, {EPOLLIN, {u32=24, u64=14180008216221450264}}) = 0epoll_wait(13, [{EPOLLIN, {u32=11, u64=17042151607409573899}}], 81921000) = 1 read(11"\1"128) = 1##开始无限loopepoll_wait(13, [], 81921000) = 0epoll_wait(13, [{EPOLLIN, {u32=24, u64=24}}], 81921000) = 1 

概括:

当BOSS轮训epoll_wait等到了连接后,首先accept得到该socket对应的fd。
连接建立后 BOSS立马抛出一个线程(clone函数)。
worker(即新建的线程)写入了一段数据(这里是业务逻辑)。
worker将该client对应的fd绑定到了13号epoll上。
worker继续轮训监听13号epoll。

4 客户端主动发送数据

worker(2301)

  1. read(24"i am daojian\r\n"1024) = 14write(24"Did you say 'i am daojian'?\r\n"29) = 29##继续无限loopepoll_wait(13, [], 81921000) = 0 

概括为:

wait到数据后,立即read到用户控件内存中(读取1024个字节到 用户控件某个buff中)。
写入数据(业务逻辑,不必太关注)。
继续轮训等待13号epoll。

5 客户端发送bye报文,服务器断开TCP连接

worker(2301)

  1. read(24"bye\r\n"1024) = 5write(24"Have a good day!\r\n"18) = 18getsockopt(24, SOL_SOCKET, SO_LINGER, {onoff=0, linger=0}, [8]) = 0dup2(2524) = 24##从epoll数据结构中(OS)中删除fd为24的socketepoll_ctl(13, EPOLL_CTL_DEL, 240x7f702dd531e0) = -1 ENOENT##关闭24 socketclose(24) = 0##继续等待13 epoll数据epoll_wait(13, [], 81921000) = 0 

断开客户端连接概括为:

从epoll中删除该客户端对应的fd(这里触发源头没找到,可能是boss)。
close关闭客户端24号fd。
继续轮训epoll。

6 五个客户端同时连接

boss线程(23130)

  1. accept(20, {sa_family=AF_INET, sin_port=htons(1846), sin_addr=inet_addr("42.120.74.122")}, [16]) = 24clone(child_stack=0x7f702cc51fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7f702cc529d0, tls=0x7f702cc52700, child_tidptr=0x7f702cc529d0) = 10035accept(20, {sa_family=AF_INET, sin_port=htons(42067), sin_addr=inet_addr("42.120.74.122")}, [16]) = 26clone(child_stack=0x7f702cb50fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7f702cb519d0, tls=0x7f702cb51700, child_tidptr=0x7f702cb519d0) = 10067... 
  2. woker线程(10035,第一个连接) 
  3.  
  4. epoll_ctl(13, EPOLL_CTL_ADD, 24, {EPOLLIN, {u32=24, u64=24}}) = 0epoll_ctl(13, EPOLL_CTL_MOD, 24, {EPOLLIN, {u32=24, u64=3226004877247250456}}) = 0epoll_wait(13, [{EPOLLIN, {u32=11, u64=17042151607409573899}}], 81921000) = 1 = 1epoll_wait(13, [], 81921000) = 0 
  5. worker线程(10067,第二个连接) 
  6.  
  7. epoll_ctl(16, EPOLL_CTL_ADD, 26, {EPOLLIN, {u32=26, u64=26}}) = 0epoll_ctl(16, EPOLL_CTL_MOD, 26, {EPOLLIN, {u32=26, u64=3221483685433835546}}) = 0epoll_wait(16, [{EPOLLIN, {u32=14, u64=17042497300737294350}}], 81921000) = 1epoll_wait(16, [], 81921000) = 0epoll_wait(16, [], 81921000) = 0 
  8. worker线程(10067,第二个连接) 
  9.  
  10. epoll_ctl(19, EPOLL_CTL_ADD, 27, {EPOLLIN, {u32=27, u64=27}}) = 0epoll_ctl(19, EPOLL_CTL_MOD, 27, {EPOLLIN, {u32=27, u64=3216966479350071323}}) = 0 
  11. worker线程(8055,第四个连接) 
  12.  
  13. epoll_ctl(10, EPOLL_CTL_ADD, 28, {EPOLLIN, {u32=28, u64=28}}) = 0epoll_ctl(10, EPOLL_CTL_MOD, 28, {EPOLLIN, {u32=28, u64=3302604828697427996}}) = 0 
  14. worker线程(10035,第五个连接,不在clone线程,而是复用了第一个epoll对应的worker) 
  15.  
  16. epoll_ctl(13, EPOLL_CTL_ADD, 29, {EPOLLIN, {u32=29, u64=29}}) = 0epoll_ctl(13, EPOLL_CTL_MOD, 29, {EPOLLIN, {u32=29, u64=29}}) = 0 

概括为:

epoll和boss、worker之间的关系:一共有4个worker对应着4个epoll对象,boss和每个worker都有对应自己的epoll。
boss根据epoll数量,平衡分配连接到每个worker对应的epoll中。

7 总结

下图通过对系统调用的调查得出 netty 和 kernel 交互图:

初始化直接创建5个epoll,其中7号为boss使用,专门用于处理和客户端连接;其余4个用来给worker使用,用户处理和客户端的数据交互。

work的线程数量,取决于初始化时创建了几个epoll,worker的复用本质上是epoll的复用。

work之间为什么要独立使用epoll?为什么不共享?

为了避免各个worker之间发生争抢连接处理,netty直接做了物理隔离,避免竞争。各个worker只负责处理自己管理的连接,并且后续该worker中的每个client的读写操作完全由 该线程单独处理,天然避免了资源竞争,避免了锁。
worker单线程,性能考虑:worker不仅仅要epoll_wait,还是处理read、write逻辑,加入worker处理了过多的连接,势必造成这部分消耗时间片过多,来不及处理更多连接,性能下降。

8 优缺点

优点

数据处理:netty提供了大量成熟的数据处理组件(ENCODER、DECODER),HTTP、POP3拿来即用。
编码复杂度、可维护性:netty充分使得业务逻辑与网络处理解耦,只需要少量的BootStrap配置即可,更多的集中在业务逻辑处理上。
性能:netty提供了的ByteBuf(底层Java原生的ByteBuffer),提供了池化的ByteBuf,兼顾读取性能和ByteBuf内存分配(在后续文档中会再做详解)。
缺点

入门有一定难度。

五 AIO

1 启动

main线程

  1. epoll_create(256) = 5epoll_ctl(5, EPOLL_CTL_ADD, 6, {EPOLLIN, {u32=6, u64=11590018039084482566}}) = 0##创建BOSS 线程(Proactor)clone(child_stack=0x7f340ac06fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7f340ac079d0, tls=0x7f340ac07700, child_tidptr=0x7f340ac079d0) = 22704socket(AF_INET6, SOCK_STREAM, IPPROTO_IP) = 8setsockopt(8, SOL_IPV6, IPV6_V6ONLY, [0], 4) = 0setsockopt(8, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0bind(8, {sa_family=AF_INET6, sin6_port=htons(9090), inet_pton(AF_INET6, "::", &sin6_addr), sin6_flowinfo=0, sin6_scope_id=0}, 28) = 0listen(850)accept(80x7f67d01b31200x7f67d9246690) = -1epoll_ctl(5, EPOLL_CTL_MOD, 8, {EPOLLIN|EPOLLONESHOT, {u32=8, u64=15380749440025362440}}) = -1 ENOENT (No such file or directory)epoll_ctl(5, EPOLL_CTL_ADD, 8, {EPOLLIN|EPOLLONESHOT, {u32=8, u64=15380749440025362440}}) = 0read(0
  2. 22704(BOSS 线程(Proactor)) 
  3.  
  4. epoll_wait(5, < unfinished ...> 

2 请求连接

  1. **22704(BOSS 线程(Proactor))处理连接**epoll_wait(5,[{EPOLLIN, {u32=9, u64=4294967305}}], 512, -1) = 1accept(8, {sa_family=AF_INET6, sin6_port=htons(55320), inet_pton(AF_INET6, "::ffff:36.24.32.140", &sin6_addr), sin6_flowinfo=0, sin6_scope_id=0}, [28]) = 9clone(child_stack=0x7ff35c99ffb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7ff35c9a09d0, tls=0x7ff35c9a0700, child_tidptr=0x7ff35c9a09d0) = 26241epoll_wait(5, < unfinished ...> 
  2. 26241 
  3.  
  4. #将client 连接的FD加入到BOSS的epoll中,以便BOSS线程监听网络事件epoll_ctl(5, EPOLL_CTL_MOD, 9, {EPOLLIN|EPOLLONESHOT, {u32=9, u64=4398046511113}}) = -1 ENOENT (No such file or directory)epoll_ctl(5, EPOLL_CTL_ADD, 9, {EPOLLIN|EPOLLONESHOT, {u32=9, u64=4398046511113}}) = 0accept(80x7ff3440008c00x7ff35c99f4d0) = -1 EAGAIN (Resource temporarily unavailable)epoll_ctl(5, EPOLL_CTL_MOD, 8, {EPOLLIN|EPOLLONESHOT, {u32=8, u64=8}}) = 0 

3 客户端发送数据

22704(BOSS 线程(Proactor))处理连接

  1. epoll_wait(5,[{EPOLLIN, {u32=9, u64=4294967305}}], 512, -1) = 1##数据读出read(9"daojian111\r\n"1024) = 12##数据处理交给其他线程,这里由于线程池为空,需要先clone线程clone(child_stack=0x7ff35c99ffb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7ff35c9a09d0, tls=0x7ff35c9a0700, child_tidptr=0x7ff35c9a09d0) = 26532 

复制线程处理,线程号26532

  1. write(1"pool-1-thread-2-10received : dao"..., 41) = 41write(1"\n"1)accept(80x7f11c400b5f00x7f11f42fd4d0) = -1 EAGAIN (Resource temporarily unavailable)epoll_ctl(5, EPOLL_CTL_MOD, 8, {EPOLLIN|EPOLLONESHOT, {u32=8, u64=8}}) = 0 

4 总结

从系统调用角度,Java的AIO事实上是以多路复用(Linux上为epoll)等同步IO为基础,自行实现了异步事件分发。
BOSS Thread负责处理连接,并分发事件。
WORKER Thread只负责从BOSS接收的事件执行,不负责任何网络事件监听。

5 优缺点

优点

相比于前面的BIO、NIO,AIO已经封装好了任务调度,使用时只需关心任务处理。

缺点

事件处理完全由Thread Pool完成,对于同一个channel的多个事件可能会出现并发问题。
相比netty,buffer API不友好容易出错;编解码工作复杂。

相关链接
https://man7.org/linux/man-pages/man2/poll.2.html
https://man7.org/linux/man-pages/man2/recvfrom.2.html
https://man7.org/linux/man-pages/man2/epoll_create.2.html
https://man7.org/linux/man-pages/man2/epoll_ctl.2.html

 

责任编辑:梁菲 来源: 阿里云云栖号
相关推荐

2021-06-30 15:25:13

操作系统Java

2019-12-12 10:57:25

LinuxIOCPU

2019-12-17 18:04:09

操作系统Linux中央处理器

2024-04-17 09:52:00

操作系统多线程内存

2023-04-26 08:50:23

IO模型操作系统Java

2022-08-01 07:09:48

Docker操作系统抽象重组

2014-10-29 19:52:31

普华操作系统

2010-04-22 14:53:07

Aix操作系统

2010-04-15 15:46:57

Unix操作系统

2024-11-15 12:24:53

2010-04-09 17:25:13

Unix操作系统

2009-12-09 17:25:19

Linux操作系统

2009-10-23 09:12:23

CLR与操作系统关系

2010-08-02 10:55:29

vSphere 4.1

2013-08-23 11:14:46

操作系统专家移动操作系统

2013-04-17 16:36:48

2009-12-22 10:56:33

2024-05-16 07:51:55

分布式系统架构

2023-07-02 11:14:21

工具TypeScript框架

2023-01-13 14:35:00

携程实践
点赞
收藏

51CTO技术栈公众号