自定义串口通信协议,如何实现?

网络 网络管理
通信协议是指双方实体完成通信或服务所必须遵循的规则和约定。通过通信信道和设备互连起来的多个不同地理位置的数据通信系统,要使其能协同工作实现信息交换和资源共享,它们之间必须具有共同的语言。交流什么、怎样交流及何时交流,都必须遵循某种互相都能接受的规则。这个规则就是通信协议。

[[402368]]

本文转载自微信公众号「strongerHuang」,作者strongerHuang。转载本文请联系strongerHuang公众号。

有一些初学者总觉得通信协议是一个很复杂的知识,把它想的很高深,导致不知道该怎么学。

同时,偶尔有读者问关于串口自定义通信协议相关的问题,今天就来写写串口通信协议,并不是你想想中的那么难?

一.什么通信协议?

通信协议不难理解,就是两个(或多个)设备之间进行通信,必须要遵循的一种协议。

百度百科的解释:

通信协议是指双方实体完成通信或服务所必须遵循的规则和约定。通过通信信道和设备互连起来的多个不同地理位置的数据通信系统,要使其能协同工作实现信息交换和资源共享,它们之间必须具有共同的语言。交流什么、怎样交流及何时交流,都必须遵循某种互相都能接受的规则。这个规则就是通信协议。

相应该有很多读者都买过一些基于串口通信的模块,市面上很多基于串口通信的模块都是自定义通信协议,有的比较简单,有的相对复杂一点。

举一个很简单的串口通信协议的例子:比如只传输一个温度值,只有三个字节的通信协议:

帧头 温度值 帧尾
5A 一字节数值 3B

这种看起来是不是很简单?它也是一种通信协议。

只是说这种通信协议应用的场合相对比较简单(一对一两个设备之间),同时,它存在很多弊端。

二.过于简单的通信协议引发的问题

上面那种只有三个字节的通信协议,相信大家都看明白了。虽然它也能通信,也能传输数据,但它存在一系列的问题。

比如:多个设备连接在一条总线(比如485)上,怎么判断传输给谁?(没有设备信息)

还比如:处于一个干扰环境,你能保障传输数据正确吗?(没有校验信息)

再比如:我想传输多个不确定长度的数据,该怎么办?(没有长度信息)。

上面这一系列问题,相信做过自定义通信的朋友都了解。

所以,在通信协议里面要约定更多的“协议信息”,这样才能保证通信的完整。

三.通信协议常见内容

基于串口的通信协议通常不能太复杂,因为串口通信速率、抗干扰能力以及其他各方面原因,相对于TCP/IP这种通信协议,是一种很轻量级的通信协议。

所以,基于串口的通信,除了一些通用的通信协议(比如:Modubs、MAVLink)之外,很多时候,工程师都会根据自己项目情况,自定义通信协议。

下面简单描述下常见自定义通信协议的一些要点内容。

(这是一些常见的协议内容,可能不同情况,其协议内容不同)

1.帧头

帧头,就是一帧通信数据的开头。

有的通信协议帧头只有一个,有的有两个,比如:5A、A5作为帧头。

2.设备地址/类型

设备地址或者设备类型,通常是用于多种设备之间,为了方便区分不同设备。

这种情况,需要在协议或者附录中要描述各种设备类型信息,方便开发者编码查询。

当然,有些固定的两种设备之间通信,可能没有这个选项。

3.命令/指令

命令/指令比较常见,一般是不同的操作,用不同的命令来区分。

举例:温度:0x01;湿度:0x02;

4.命令类型/功能码

这个选项对命令进一步补充。比如:读、写操作。

举例:读Flash:0x01; 写Flash:0x02;

5.数据长度

数据长度这个选项,可能有的协议会把该选项提到前面设备地址位置,把命令这些信息算在“长度”里面。

这个主要是方便协议(接收)解析的时候,统计接收数据长度。

比如:有时候传输一个有效数据,有时候要传输多个有效数据,甚至传输一个数组的数据。这个时候,传输的一帧数据就是不定长数据,就必须要有【数据长度】来约束。

有的长度是一个字节,其范围:0x01 ~ 0xFF,有的可能要求一次性传输更多,就用两个字节表示,其范围0x0001 ~ 0xFFFFF。

当然,有的通信长度是固定的长度(比如固定只传输、温度、湿度这两个数据),其协议可能没有这个选项。

6.数据

数据就不用描述了,就是你传输的实实在在的数据,比如温度:25℃。

7.帧尾

有些协议可能没有帧尾,这个应该是可有可无的一个选项。

8.校验码

校验码是一个比较重要的内容,一般正规一点的通信协议都有这个选项,原因很简单,通信很容易受到干扰,或者其他原因,导致传输数据出错。

如果有校验码,就能比较有效避免数据传输出错的的情况。

校验码的方式有很多,校验和、CRC校验算是比较常见的,用于自定义协议中的校验方式。

还有一点,有的协议可能把校验码放在倒数第二,帧尾放在最后位置。

四.通信协议代码实现

自定义通信协议,代码实现的方式有很多种,怎么说呢,“条条大路通罗马”你只需要按照你协议要写实现代码就行。

当然,实现的同时,需要考虑你项目实际情况,比如通信数据比较多,要用消息队列(FIFO),还比如,如果协议复杂,最好封装结构体等。

下面分享一些以前用到的代码,可能没有描述更多细节,但一些思想可以借鉴。

1.消息数据发送

a.通过串口直接发送每一个字节

这种对于新手来说都能理解,这里分享一个之前DGUS串口屏的例子:

  1. #define DGUS_FRAME_HEAD1          0xA5                     //DGUS屏帧头1 
  2. #define DGUS_FRAME_HEAD2          0x5A                     //DGUS屏帧头2 
  3.  
  4. #define DGUS_CMD_W_REG            0x80                     //DGUS写寄存器指令 
  5. #define DGUS_CMD_R_REG            0x81                     //DGUS读寄存器指令 
  6. #define DGUS_CMD_W_DATA           0x82                     //DGUS写数据指令 
  7. #define DGUS_CMD_R_DATA           0x83                     //DGUS读数据指令 
  8. #define DGUS_CMD_W_CURVE          0x85                     //DGUS写曲线指令 
  9.  
  10. /* DGUS寄存器地址 */ 
  11. #define DGUS_REG_VERSION          0x00                     //DGUS版本 
  12. #define DGUS_REG_LED_NOW          0x01                     //LED背光亮度 
  13. #define DGUS_REG_BZ_TIME          0x02                     //蜂鸣器时长 
  14. #define DGUS_REG_PIC_ID           0x03                     //显示页面ID 
  15. #define DGUS_REG_TP_FLAG          0x05                     //触摸坐标更新标志 
  16. #define DGUS_REG_TP_STATUS        0x06                     //坐标状态 
  17. #define DGUS_REG_TP_POSITION      0x07                     //坐标位置 
  18. #define DGUS_REG_TPC_ENABLE       0x0B                     //触控使能 
  19. #define DGUS_REG_RTC_NOW          0x20                     //当前RTCS 
  20.  
  21. //往DGDS屏指定寄存器写一字节数据 
  22. void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data) 
  23.   DGUS_SendByte(DGUS_FRAME_HEAD1); 
  24.   DGUS_SendByte(DGUS_FRAME_HEAD2); 
  25.   DGUS_SendByte(0x04); 
  26.  
  27.   DGUS_SendByte(DGUS_CMD_W_REG);                 //指令 
  28.   DGUS_SendByte(RegAddr);                        //地址 
  29.  
  30.   DGUS_SendByte((uint8_t)(Data>>8));             //数据 
  31.   DGUS_SendByte((uint8_t)(Data&0xFF)); 
  32.  
  33. //往DGDS屏指定地址写一字节数据 
  34. void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data) 
  35.   DGUS_SendByte(DGUS_FRAME_HEAD1); 
  36.   DGUS_SendByte(DGUS_FRAME_HEAD2); 
  37.   DGUS_SendByte(0x05); 
  38.  
  39.   DGUS_SendByte(DGUS_CMD_W_DATA);                //指令 
  40.  
  41.   DGUS_SendByte((uint8_t)(DataAddr>>8));         //地址 
  42.   DGUS_SendByte((uint8_t)(DataAddr&0xFF)); 
  43.  
  44.   DGUS_SendByte((uint8_t)(Data>>8));             //数据 
  45.   DGUS_SendByte((uint8_t)(Data&0xFF)); 

b.通过消息队列发送

在上面基础上,用一个buf装下消息,然后“打包”到消息队列,通过消息队列的方式(FIFO)发送出去。

  1. static uint8_t  sDGUS_SendBuf[DGUS_PACKAGE_LEN]; 
  2.  
  3. //往DGDS屏指定寄存器写一字节数据 
  4. void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data) 
  5.   sDGUS_SendBuf[0] = DGUS_FRAME_HEAD1;           //帧头 
  6.   sDGUS_SendBuf[1] = DGUS_FRAME_HEAD2; 
  7.   sDGUS_SendBuf[2] = 0x06;                       //长度 
  8.   sDGUS_SendBuf[3] = DGUS_CMD_W_CTRL;            //指令 
  9.   sDGUS_SendBuf[4] = RegAddr;                    //地址 
  10.   sDGUS_SendBuf[5] = (uint8_t)(Data>>8);         //数据 
  11.   sDGUS_SendBuf[6] = (uint8_t)(Data&0xFF); 
  12.  
  13.   DGUS_CRC16(&sDGUS_SendBuf[3], sDGUS_SendBuf[2] - 2, &sDGUS_CRC_H, &sDGUS_CRC_L); 
  14.   sDGUS_SendBuf[7] = sDGUS_CRC_H;                //校验 
  15.   sDGUS_SendBuf[8] = sDGUS_CRC_L; 
  16.  
  17.   DGUSSend_Packet_ToQueue(sDGUS_SendBuf, sDGUS_SendBuf[2] + 3); 
  18.  
  19. //往DGDS屏指定地址写一字节数据 
  20. void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data) 
  21.   sDGUS_SendBuf[0] = DGUS_FRAME_HEAD1;           //帧头 
  22.   sDGUS_SendBuf[1] = DGUS_FRAME_HEAD2; 
  23.   sDGUS_SendBuf[2] = 0x07;                       //长度 
  24.   sDGUS_SendBuf[3] = DGUS_CMD_W_DATA;            //指令 
  25.   sDGUS_SendBuf[4] = (uint8_t)(DataAddr>>8);     //地址 
  26.   sDGUS_SendBuf[5] = (uint8_t)(DataAddr&0xFF); 
  27.   sDGUS_SendBuf[6] = (uint8_t)(Data>>8);         //数据 
  28.   sDGUS_SendBuf[7] = (uint8_t)(Data&0xFF); 
  29.  
  30.   DGUS_CRC16(&sDGUS_SendBuf[3], sDGUS_SendBuf[2] - 2, &sDGUS_CRC_H, &sDGUS_CRC_L); 
  31.   sDGUS_SendBuf[8] = sDGUS_CRC_H;                //校验 
  32.   sDGUS_SendBuf[9] = sDGUS_CRC_L; 
  33.  
  34.   DGUSSend_Packet_ToQueue(sDGUS_SendBuf, sDGUS_SendBuf[2] + 3); 

c.用“结构体”代替“数组SendBuf”方式

结构体对数组更方便引用,也方便管理,所以,结构体方式相比数组buf更高级,也更实用。(当然,如果成员比较多,如果用临时变量方式也会导致占用过多堆栈的情况)

比如:

  1. typedef struct 
  2.   uint8_t  Head1;                 //帧头1 
  3.   uint8_t  Head2;                 //帧头2 
  4.   uint8_t  Len;                   //长度 
  5.   uint8_t  Cmd;                   //命令 
  6.   uint8_t  Data[DGUS_DATA_LEN];   //数据 
  7.   uint16_t CRC16;                 //CRC校验 
  8. }DGUS_PACKAGE_TypeDef; 

d.其他更多

串口发送数据的方式有很多,比如用DMA的方式替代消息队列的方式。

2.消息数据接收

串口消息接收,通常串口中断接收的方式居多,当然,也有很少情况用轮询的方式接收数据。

a.常规中断接收

还是以DGUS串口屏为例,描述一种简单又常见的中断接收方式:

  1. void DGUS_ISRHandler(uint8_t Data) 
  2.   static uint8_t sDgus_RxNum = 0;                //数量 
  3.   static uint8_t sDgus_RxBuf[DGUS_PACKAGE_LEN]; 
  4.   static portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; 
  5.  
  6.   sDgus_RxBuf[gDGUS_RxCnt] = Data; 
  7.   gDGUS_RxCnt++; 
  8.  
  9.   /* 判断帧头 */ 
  10.   if(sDgus_RxBuf[0] != DGUS_FRAME_HEAD1)       //接收到帧头1 
  11.   { 
  12.     gDGUS_RxCnt = 0; 
  13.     return
  14.   } 
  15.   if((2 == gDGUS_RxCnt) && (sDgus_RxBuf[1] != DGUS_FRAME_HEAD2)) 
  16.   { 
  17.     gDGUS_RxCnt = 0; 
  18.     return
  19.   } 
  20.  
  21.   /* 确定一帧数据长度 */ 
  22.   if(gDGUS_RxCnt == 3) 
  23.   { 
  24.     sDgus_RxNum = sDgus_RxBuf[2] + 3; 
  25.   } 
  26.  
  27.   /* 接收完一帧数据 */ 
  28.   if((6 <= gDGUS_RxCnt) && (sDgus_RxNum <= gDGUS_RxCnt)) 
  29.   { 
  30.     gDGUS_RxCnt = 0; 
  31.  
  32.     if(xDGUSRcvQueue != NULL)                    //解析成功, 加入队列 
  33.     { 
  34.       xQueueSendFromISR(xDGUSRcvQueue, &sDgus_RxBuf[0], &xHigherPriorityTaskWoken); 
  35.       portEND_SWITCHING_ISR(xHigherPriorityTaskWoken); 
  36.     } 
  37.   } 

b.增加超时检测

接收数据有可能存在接收了一半,中断因为某种原因中断了,这时候,超时检测也很有必要。

比如:用多余的MCU定时器做一个超时计数的处理,接收到一个数据,开始计时,超过1ms没有接收到下一个数据,就丢掉这一包(前面接收的)数据。

  1. static void DGUS_TimingAndUpdate(uint16_t Nms) 
  2.   sDGUSTiming_Nms_Num = Nms; 
  3.   TIM_SetCounter(DGUS_TIM, 0);                   //设置计数值为0 
  4.   TIM_Cmd(DGUS_TIM, ENABLE);                     //启动定时器 
  5.  
  6. void DGUS_COM_IRQHandler(void) 
  7.   if((DGUS_COM->SR & USART_FLAG_RXNE) == USART_FLAG_RXNE) 
  8.   { 
  9.     DGUS_TimingAndUpdate(5);                     //更新定时(防止超时) 
  10.     DGUS_ISRHandler((uint8_t)USART_ReceiveData(DGUS_COM)); 
  11.   } 

c.更多

接收和发送一样,实现方法有很多种,比如接收同样也可以用结构体方式。但有一点,都需要结合你实际需求来编码。

五.最后

以上自定义协议内容仅供参考,最终用哪些、占用几个字节都与你实际需求有关。

基于串口的自定义通信协议,有千差万别,比如:MCU处理能力、设备多少、通信内容等都与你自定义协议有关。

有的可能只需要很简单的通信协议就能满足要求。有的可能需要更复杂的协议才能满足。

最后强调两点:

1.以上举例并不是完整的代码(有些细节没有描述出来),主要是供大家学习这种编程思想,或者实现方式。

2.一份好的通信协议代码,必定有一定容错处理,比如:发送完成检测、接收超时检测、数据出错检测等等。所以说,以上代码并不是完整的代码。

 

责任编辑:武晓燕 来源: strongerHuang
相关推荐

2021-03-04 09:50:23

Redis网络通信Redis服务器

2023-10-12 19:37:50

通信协议HTTP

2022-12-02 14:42:37

2010-06-11 14:31:08

通信协议

2009-09-07 22:00:15

LINQ自定义

2019-05-27 06:05:20

物联网协议物联网IOT

2010-07-06 17:14:03

网关通信协议

2010-06-25 14:43:46

通信协议

2010-06-11 14:25:08

通信协议

2023-01-03 07:40:27

自定义滑块组件

2009-09-03 13:34:03

.NET自定义控件

2010-06-09 10:43:54

广义网协议

2019-08-23 12:49:18

USB通信协议

2009-12-22 09:37:47

网关设置通信协议

2019-04-29 10:26:49

TCP网络协议网络通信

2013-01-10 09:36:19

NagiosNagios插件

2024-02-20 19:53:57

网络通信协议

2023-04-27 17:49:38

物联网通信协议

2020-02-20 22:44:01

通信协议物联网终端设备

2010-06-09 11:31:55

网络通信协议
点赞
收藏

51CTO技术栈公众号