本文转载自微信公众号「大数据技术与数仓」,作者西贝。转载本文请联系大数据技术与数仓公众号。
Flink包含8中分区策略,这8中分区策略(分区器)分别如下面所示,本文将从源码的角度一一解读每个分区器的实现方式。
- GlobalPartitioner
- ShufflePartitioner
- RebalancePartitioner
- RescalePartitioner
- BroadcastPartitioner
- ForwardPartitioner
- KeyGroupStreamPartitioner
- CustomPartitionerWrapper
继承关系图
接口
名称
ChannelSelector
实现
- public interface ChannelSelector<T extends IOReadableWritable> {
- /**
- * 初始化channels数量,channel可以理解为下游Operator的某个实例(并行算子的某个subtask).
- */
- void setup(int numberOfChannels);
- /**
- *根据当前的record以及Channel总数,
- *决定应将record发送到下游哪个Channel。
- *不同的分区策略会实现不同的该方法。
- */
- int selectChannel(T record);
- /**
- *是否以广播的形式发送到下游所有的算子实例
- */
- boolean isBroadcast();
- }
抽象类
名称
StreamPartitioner
实现
- public abstract class StreamPartitioner<T> implements
- ChannelSelector<SerializationDelegate<StreamRecord<T>>>, Serializable {
- private static final long serialVersionUID = 1L;
- protected int numberOfChannels;
- @Override
- public void setup(int numberOfChannels) {
- this.numberOfChannels = numberOfChannels;
- }
- @Override
- public boolean isBroadcast() {
- return false;
- }
- public abstract StreamPartitioner<T> copy();
- }
继承关系图
GlobalPartitioner
简介
该分区器会将所有的数据都发送到下游的某个算子实例(subtask id = 0)
源码解读
- /**
- * 发送所有的数据到下游算子的第一个task(ID = 0)
- * @param <T>
- */
- @Internal
- public class GlobalPartitioner<T> extends StreamPartitioner<T> {
- private static final long serialVersionUID = 1L;
- @Override
- public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
- //只返回0,即只发送给下游算子的第一个task
- return 0;
- }
- @Override
- public StreamPartitioner<T> copy() {
- return this;
- }
- @Override
- public String toString() {
- return "GLOBAL";
- }
- }
图解
ShufflePartitioner
简介
随机选择一个下游算子实例进行发送
源码解读
- /**
- * 随机的选择一个channel进行发送
- * @param <T>
- */
- @Internal
- public class ShufflePartitioner<T> extends StreamPartitioner<T> {
- private static final long serialVersionUID = 1L;
- private Random random = new Random();
- @Override
- public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
- //产生[0,numberOfChannels)伪随机数,随机发送到下游的某个task
- return random.nextInt(numberOfChannels);
- }
- @Override
- public StreamPartitioner<T> copy() {
- return new ShufflePartitioner<T>();
- }
- @Override
- public String toString() {
- return "SHUFFLE";
- }
- }
图解
BroadcastPartitioner
简介
发送到下游所有的算子实例
源码解读
- /**
- * 发送到所有的channel
- */
- @Internal
- public class BroadcastPartitioner<T> extends StreamPartitioner<T> {
- private static final long serialVersionUID = 1L;
- /**
- * Broadcast模式是直接发送到下游的所有task,所以不需要通过下面的方法选择发送的通道
- */
- @Override
- public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
- throw new UnsupportedOperationException("Broadcast partitioner does not support select channels.");
- }
- @Override
- public boolean isBroadcast() {
- return true;
- }
- @Override
- public StreamPartitioner<T> copy() {
- return this;
- }
- @Override
- public String toString() {
- return "BROADCAST";
- }
- }
图解
RebalancePartitioner
简介
通过循环的方式依次发送到下游的task
源码解读
- /**
- *通过循环的方式依次发送到下游的task
- * @param <T>
- */
- @Internal
- public class RebalancePartitioner<T> extends StreamPartitioner<T> {
- private static final long serialVersionUID = 1L;
- private int nextChannelToSendTo;
- @Override
- public void setup(int numberOfChannels) {
- super.setup(numberOfChannels);
- //初始化channel的id,返回[0,numberOfChannels)的伪随机数
- nextChannelToSendTo = ThreadLocalRandom.current().nextInt(numberOfChannels);
- }
- @Override
- public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
- //循环依次发送到下游的task,比如:nextChannelToSendTo初始值为0,numberOfChannels(下游算子的实例个数,并行度)值为2
- //则第一次发送到ID = 1的task,第二次发送到ID = 0的task,第三次发送到ID = 1的task上...依次类推
- nextChannelToSendTo = (nextChannelToSendTo + 1) % numberOfChannels;
- return nextChannelToSendTo;
- }
- public StreamPartitioner<T> copy() {
- return this;
- }
- @Override
- public String toString() {
- return "REBALANCE";
- }
- }
图解
RescalePartitioner
简介
基于上下游Operator的并行度,将记录以循环的方式输出到下游Operator的每个实例。
举例: 上游并行度是2,下游是4,则上游一个并行度以循环的方式将记录输出到下游的两个并行度上;上游另一个并行度以循环的方式将记录输出到下游另两个并行度上。
若上游并行度是4,下游并行度是2,则上游两个并行度将记录输出到下游一个并行度上;上游另两个并行度将记录输出到下游另一个并行度上。
源码解读
- @Internal
- public class RescalePartitioner<T> extends StreamPartitioner<T> {
- private static final long serialVersionUID = 1L;
- private int nextChannelToSendTo = -1;
- @Override
- public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
- if (++nextChannelToSendTo >= numberOfChannels) {
- nextChannelToSendTo = 0;
- }
- return nextChannelToSendTo;
- }
- public StreamPartitioner<T> copy() {
- return this;
- }
- @Override
- public String toString() {
- return "RESCALE";
- }
- }
图解
尖叫提示
Flink 中的执行图可以分成四层:StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图。
StreamGraph:是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。
JobGraph:StreamGraph经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。主要的优化为,将多个符合条件的节点 chain 在一起作为一个节点,这样可以减少数据在节点之间流动所需要的序列化/反序列化/传输消耗。
ExecutionGraph:JobManager 根据 JobGraph 生成ExecutionGraph。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据结构。
物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个TaskManager 上部署 Task 后形成的“图”,并不是一个具体的数据结构。
而StreamingJobGraphGenerator就是StreamGraph转换为JobGraph。在这个类中,把ForwardPartitioner和RescalePartitioner列为POINTWISE分配模式,其他的为ALL_TO_ALL分配模式。代码如下:
- if (partitioner instanceof ForwardPartitioner || partitioner instanceof RescalePartitioner) {
- jobEdge = downStreamVertex.connectNewDataSetAsInput(
- headVertex,
- // 上游算子(生产端)的实例(subtask)连接下游算子(消费端)的一个或者多个实例(subtask)
- DistributionPattern.POINTWISE,
- resultPartitionType);
- } else {
- jobEdge = downStreamVertex.connectNewDataSetAsInput(
- headVertex,
- // 上游算子(生产端)的实例(subtask)连接下游算子(消费端)的所有实例(subtask)
- DistributionPattern.ALL_TO_ALL,
- resultPartitionType);
- }
ForwardPartitioner
简介
发送到下游对应的第一个task,保证上下游算子并行度一致,即上有算子与下游算子是1:1的关系
源码解读
- /**
- * 发送到下游对应的第一个task
- * @param <T>
- */
- @Internal
- public class ForwardPartitioner<T> extends StreamPartitioner<T> {
- private static final long serialVersionUID = 1L;
- @Override
- public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
- return 0;
- }
- public StreamPartitioner<T> copy() {
- return this;
- }
- @Override
- public String toString() {
- return "FORWARD";
- }
- }
图解
尖叫提示
在上下游的算子没有指定分区器的情况下,如果上下游的算子并行度一致,则使用ForwardPartitioner,否则使用RebalancePartitioner,对于ForwardPartitioner,必须保证上下游算子并行度一致,否则会抛出异常
- //在上下游的算子没有指定分区器的情况下,如果上下游的算子并行度一致,则使用ForwardPartitioner,否则使用RebalancePartitioner
- if (partitioner == null && upstreamNode.getParallelism() == downstreamNode.getParallelism()) {
- partitioner = new ForwardPartitioner<Object>();
- } else if (partitioner == null) {
- partitioner = new RebalancePartitioner<Object>();
- }
- if (partitioner instanceof ForwardPartitioner) {
- //如果上下游的并行度不一致,会抛出异常
- if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) {
- throw new UnsupportedOperationException("Forward partitioning does not allow " +
- "change of parallelism. Upstream operation: " + upstreamNode + " parallelism: " + upstreamNode.getParallelism() +
- ", downstream operation: " + downstreamNode + " parallelism: " + downstreamNode.getParallelism() +
- " You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global.");
- }
- }
KeyGroupStreamPartitioner
简介
根据key的分组索引选择发送到相对应的下游subtask
源码解读
- /**
- * 根据key的分组索引选择发送到相对应的下游subtask
- * @param <T>
- * @param <K>
- */
- @Internal
- public class KeyGroupStreamPartitioner<T, K> extends StreamPartitioner<T> implements ConfigurableStreamPartitioner {
- ...
- @Override
- public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
- K key;
- try {
- key = keySelector.getKey(record.getInstance().getValue());
- } catch (Exception e) {
- throw new RuntimeException("Could not extract key from " + record.getInstance().getValue(), e);
- }
- //调用KeyGroupRangeAssignment类的assignKeyToParallelOperator方法,代码如下所示
- return KeyGroupRangeAssignment.assignKeyToParallelOperator(key, maxParallelism, numberOfChannels);
- }
- ...
- }
- org.apache.flink.runtime.state.KeyGroupRangeAssignment
- public final class KeyGroupRangeAssignment {
- ...
- /**
- * 根据key分配一个并行算子实例的索引,该索引即为该key要发送的下游算子实例的路由信息,
- * 即该key发送到哪一个task
- */
- public static int assignKeyToParallelOperator(Object key, int maxParallelism, int parallelism) {
- Preconditions.checkNotNull(key, "Assigned key must not be null!");
- return computeOperatorIndexForKeyGroup(maxParallelism, parallelism, assignToKeyGroup(key, maxParallelism));
- }
- /**
- *根据key分配一个分组id(keyGroupId)
- */
- public static int assignToKeyGroup(Object key, int maxParallelism) {
- Preconditions.checkNotNull(key, "Assigned key must not be null!");
- //获取key的hashcode
- return computeKeyGroupForKeyHash(key.hashCode(), maxParallelism);
- }
- /**
- * 根据key分配一个分组id(keyGroupId),
- */
- public static int computeKeyGroupForKeyHash(int keyHash, int maxParallelism) {
- //与maxParallelism取余,获取keyGroupId
- return MathUtils.murmurHash(keyHash) % maxParallelism;
- }
- //计算分区index,即该key group应该发送到下游的哪一个算子实例
- public static int computeOperatorIndexForKeyGroup(int maxParallelism, int parallelism, int keyGroupId) {
- return keyGroupId * parallelism / maxParallelism;
- }
- ...
图解
CustomPartitionerWrapper
简介
通过Partitioner实例的partition方法(自定义的)将记录输出到下游。
- public class CustomPartitionerWrapper<K, T> extends StreamPartitioner<T> {
- private static final long serialVersionUID = 1L;
- Partitioner<K> partitioner;
- KeySelector<T, K> keySelector;
- public CustomPartitionerWrapper(Partitioner<K> partitioner, KeySelector<T, K> keySelector) {
- this.partitioner = partitioner;
- this.keySelector = keySelector;
- }
- @Override
- public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
- K key;
- try {
- key = keySelector.getKey(record.getInstance().getValue());
- } catch (Exception e) {
- throw new RuntimeException("Could not extract key from " + record.getInstance(), e);
- }
- //实现Partitioner接口,重写partition方法
- return partitioner.partition(key, numberOfChannels);
- }
- @Override
- public StreamPartitioner<T> copy() {
- return this;
- }
- @Override
- public String toString() {
- return "CUSTOM";
- }
- }
比如:
- public class CustomPartitioner implements Partitioner<String> {
- // key: 根据key的值来分区
- // numPartitions: 下游算子并行度
- @Override
- public int partition(String key, int numPartitions) {
- return key.length() % numPartitions;//在此处定义分区策略
- }
- }
小结
本文主要从源码层面对Flink的8中分区策略进行了一一分析,并对每一种分区策略给出了相对应的图示,方便快速理解源码。如果你觉得本文对你有用,可以关注我,了解更多精彩内容。