为什么Python是机器学习的理想选择?

开发 后端 机器学习
Python 人工智能项目在各种形式和规模的公司中变得非常流行。以下是 Python 语言非常适合 ML 开发的原因。

[[395543]]

 Python 人工智能项目在各种形式和规模的公司中变得非常流行。以下是 Python 语言非常适合 ML 开发的原因。

如今,大多数公司都在使用 Python 进行 AI 和机器学习。随着预测分析和模式识别变得比以往任何时候都更流行,Python 开发服务是大规模企业和初创公司的优先事项。Python 开发人员的需求量也随之变大——主要是因为使用该语言可以实现相应功能。AI 编程语言需要强大、可扩展和可读性。而 Python 代码在这三方面都能实现。

虽然有其他技术栈可用于基于 AI 的项目,但 Python 已被证明是最好的编程语言。它为人工智能和机器学习(ML)提供了优秀的库和框架,以及计算能力、统计计算和科学计算等。

在本文中,我们将了解 Python 编程语言的几个方面,使其成为机器学习工程师的完美选择。我们将探讨以下内容:

  •  为什么使用 Python 软件进行机器学习和 AI
  •  用于 AI 的最佳 Python 库
  •  结论

让我们来了解一下为什么开发人员喜欢这种编程语言,而不是 R、Go、Scala 和其他为 AI 项目设计的语言。

为什么使用 Python 进行机器学习和 AI?

调查显示,Python 现在是继 C 和 Java 之后的又一门顶级的编程语言。它允许开发人员为 Python AI项目构建强大的后端系统。将 Python 编程语言对机器学习和 AI 开发有多种好处。让我们来详细了解一下它们。

快速开发

  •  Python 社区欣赏这种编程语言的快速原型设计能力。开发者可以减少在学习复杂的堆栈上浪费的时间。他们可以快速开始 AI 开发,并迅速进入构建人工智能算法和程序的阶段。
  •  由于 Python 代码与英文相似,所以它易于阅读和编写。开发人员不必花费大量时间来编写复杂的代码。除此之外,在 Python 中还有一些用于 AI 和机器学习(ML)的优秀库和框架,可以帮助简化这个过程。我们将在文章后面详细了解它们。

灵活的语言

  •  让开发者能够最大限度的灵活性进行 AI 应用开发,是 Python 程序员对这门语言的钦佩之处。用于 机器学习的 Python 允许你选择 OOPS 或基于脚本的编程,并且可以在不完全重新编译 Python 代码的情况下快速查看结果。
  •  有四种不同风格的 Python 软件可以选择——命令式、面向对象、函数式和程序式,所有这些都可以根据你的 AI 项目减少出错的可能性。

可读性

  •  对于大多数开发者来说,可读性是一个改变游戏规则的因素。机器学习开发的 Python 语法就像英语一样。你不必长期陷入于理解这门语言。
  •  如果有开发人员在项目中途加入,他们也可以轻松理解发生了什么。在 Python 中引起混乱、错误和冲突的几率也较低,能够迅速开发任何机器学习程序。

可视化选项

  •  数据是机器学习、人工智能和深度学习算法最重要的部分。处理数据需要大量的可视化,以确定模式并理解所有变量和因素。为此,Python 软件包是最好的。
  •  开发人员可以构建直方图、图表和图,以便更好地理解数据将如何相互作用和共同工作。还有一些 API 可以让你勾勒出清晰的数据报告,从而使可视化过程变得更加简单。

除此之外,还有一个令人惊叹的 Python 社区可以在整个开发过程中提供支持、一致性和简单性。Python 编程语言现在正成为机器学习开发的常见语言,在这个过程中也有一些库促使了这成为可能。让我们来看看一些针对 AI 开发优秀的 Python 库。

Python 用于 AI 和 ML 的 6 大库和框架

Python 编程语言最棒的地方是有大量的机器学习开发的库。以下是 6 大 Python 库,它们通过可读性和强大的算法使人工智能无缝衔接。

NumPy

如果没有 NumPy,数据科学将是不完整的。它是一个可以进行科学计算的 Python 软件包。NumPy 是一个神奇的多维数组对象库。它们协同工作,降低了程序的计算复杂性。

SciPy

SciPy 是 Python 人工智能项目的另一个热门库,也是涉及数学和工程领域中, Python 程序员科学和重度计算的首选。它提供了数值优化和集成的例程,对于初学者来说非常友好。

Scikit-Learn

这个库建立在 NumPy 和 SciPy 之上,主要用于监督和无监督学习。它是一个用于数据挖掘和数据分析的完美工具。

Pandas

Pandas 是开源的 Python 软件包,使程序员能够对数据进行操作和分析。它具有高效的数据探索和可视化功能,并提供高级数据结构和多种工具,可用于密切处理多个数据集。

Keras

Keras 是一个运行在 TensorFlow 上的 API。Keras的重点是让开发者快速实验人工智能。这个库的用户体验比 TensorFlow 好得多——因为它是用 Python 开发的,所以比其他工具更容易理解。

Matplotlib

所有库中最强大的是 Matplotlib。它提供了数据可视化和探索的功能,以及图表、直方图和散点图等,以定制 Python AI 项目。Matplotlib 有助于在更短的时间内快速操作数据进行可视化展示。

这些是 Python和机器学习的6大库。除此以外,还有TensorFlow、NLTK、PyBrain、Caffe等库,这些库会导致AI应用的适当性能。

结论

通过上文我们看到了 Python 对机器学习的好处,以及为什么它对 AI 很重要。我们还看了简化 Python AI 开发过程的顶级 Python 库和工具。

从本质上讲,Python 是人工智能的一种特殊编程语言。它具有同时处理海量数据请求的能力和可扩展性。将来还会看到更多 Python 和机器学习的整合。 

 

责任编辑:庞桂玉 来源: 马哥Linux运维
相关推荐

2022-04-01 09:14:58

Zorin OSLinux

2021-02-03 11:00:27

对象存储人工智能机器学习

2021-04-26 13:22:55

人工智能机器学习

2020-07-29 08:34:30

机器学习安全工具

2021-03-09 15:21:13

Python机器学习开发

2023-02-26 01:25:23

Sanic框架工具

2021-03-09 19:42:27

机器学习治理机器学习

2021-05-24 08:00:00

机器学习数据云计算

2018-10-12 16:12:37

机器学习深度学习人工智能

2017-08-08 10:55:03

大数据R语言数据分析

2018-03-22 06:33:40

2022-01-23 22:45:52

物联网Java编程语言

2022-06-20 07:16:25

机器学习模型Codex

2015-11-13 11:02:35

2023-11-06 08:58:52

正则化机器学习Laplace

2024-02-20 15:17:35

机器学习模型部署

2022-07-18 18:01:58

制造业工业 4.0

2020-11-06 09:00:00

机器学习集成学习人工智能

2023-02-03 16:11:28

物联网智能建筑

2020-08-07 07:05:48

JavaScript开发技术
点赞
收藏

51CTO技术栈公众号