DeepMind提出基于视觉的强化学习模型,十八般兵器对机器人不在话下

新闻 人工智能
人类是擅于模仿的,我们和其他动物通过观察行为来模仿,理解它对环境状态的感知影响,并找出我们的身体可以采取什么行动来达到类似的结果。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 人类是擅于模仿的,我们和其他动物通过观察行为来模仿,理解它对环境状态的感知影响,并找出我们的身体可以采取什么行动来达到类似的结果。

对于机器人学习任务来说,模仿学习是一个强大的工具。但在这类环境感知任务中,使用强化学习来指定一个回报函数却是很困难的。

DeepMind最新论文主要探索了仅从第三人称视觉模仿操作轨迹的可能性,而不依赖action状态,团队的灵感来自于一个机器人机械手模仿视觉上演示的复杂的行为。

DeepMind提出的方法主要分为两个阶段:

1、提出一种操作器无关的表示(MIR, Manipulation-Independent Representations),即不管是机械手、人手或是其他设备,保证这种表示都能够用于后续任务的学习

2、使用强化学习来学习action策略

与操作器无关的表示

领域适应性问题是机器人模拟现实中最关键的问题,即解决视觉仿真和现实之间的差别。

1、 随机使用各种类型操作器,各种仿真环境用来模拟现实世界

2、加入去除操作臂后的观察

3、时序平滑对抗网络(TSCN, Temporally-Smooth Contrastive Networks),相比TCN来说,在softmax交叉熵目标函数中增加了一个分布系数p,使得学习过程更加平滑,尤其是在cross-domain的情况。

使用强化学习

MIR表示空间的需求是actionable的,即可用于强化学习,表示为具体的action。

一个解决方案是使用goal-conditioned来训练策略,输入为当前状态o和目标状态g。这篇文章提出一种扩展方式,cross-domain goal-conditional policies,输入当前状态o和跨域的目标状态o',最小化到达目标的行动次数。

数据和实验

研究小组在8个环境和场景(规范模拟、隐形手臂、随机手臂、随机域、Jaco Hand、真机器人、手杖和人手)上进行了实验,以评估通过未知机械手模拟无约束操作轨迹的性能。

他们还用了一些基线方法,如朴素的goal conditioned plicies (GCP)和temporal distance。

MIR 在所有测试领域都取得了最好的性能。它在叠加成功率方面的表现显著提高,并且以100% 的分数很好地模仿了模拟的 Jaco Hand 和 Invisible Arm。

这项研究论证了视觉模仿表征在视觉模仿中的重要性,并验证了操作无关表征在视觉模仿中的成功应用。

未来工厂中的机器人将拥有更强大的学习能力,并不局限于一种特定工具,一种特定任务。

 

责任编辑:张燕妮 来源: 新智元
相关推荐

2019-03-12 09:00:00

安全工具病毒软件恶意软件

2010-09-03 13:30:19

CSS

2021-04-21 14:15:08

机器人AI人工智能

2019-03-11 09:00:00

安全工具病毒软件恶意软件

2023-02-07 23:42:55

机器人技术识别

2023-09-21 10:29:01

AI模型

2019-04-08 18:26:49

网络安全网络安全技术周刊

2021-07-02 16:04:54

机器人人工智能AI

2022-01-20 09:56:33

机器人冬奥滑雪

2024-04-15 08:20:00

机器人技能

2022-11-02 14:02:02

强化学习训练

2021-05-07 09:18:04

CSS 文字动画技巧

2011-06-20 13:29:44

2010-04-01 15:01:26

配置无线路由器

2022-07-24 19:24:32

机器学习预训练模型机器人

2021-01-12 14:50:55

机器学习人工智能计算机

2024-09-05 08:23:58

2024-04-17 13:20:29

2024-10-29 15:20:00

强化学习模型

2022-05-24 07:40:40

CSS逐帧动画图片轮播
点赞
收藏

51CTO技术栈公众号