5张图,看懂数据分析体系

大数据 数据分析
讲数据分析体系的文章很多,经常是开篇一句:互联网分析体系……,下边几百个指标blabla汹涌而出。搞得很多同学很晕菜:这么多指标,实际中到底怎么看?今天系统讲解一下。话不多说,直接上场景。

[[387900]]

本文转载自微信公众号「接地气学堂」,作者接地气的陈老师。转载本文请联系接地气学堂公众号。

讲数据分析体系的文章很多,经常是开篇一句:互联网分析体系……,下边几百个指标blabla汹涌而出。搞得很多同学很晕菜:这么多指标,实际中到底怎么看?今天系统讲解一下。话不多说,直接上场景。

场景:某视频APP内容运营,每天会固定输出游戏主题节目,节目以介绍游戏为主,目前暂无带货环节,也没有其他KPI考核,就这么先做着。

每一个视频,有:播放次数、播放人数、人均播放时长、会员观看数、10%/30%/50%/90%播放完成数、单个视频发布后首日至第七日每日播放数据。还能分成:仅PC端播放、仅移动端播放,PC+移动端播放……同时由于是自己的平台播放,所以能统计到每个用户站内其他视频浏览行为。

问题是:这一堆指标该咋看?

1 常见问题

很多同学会直接把这一堆指标铺出来。

● PC渠道的播放次数、播放人数、人均播放时长……

● 移动端的播放次数、播放人数、人均播放时长……

● 本周的、上周的、上上周的、……

● 本次的、上次的、最近10次的、……

一大堆指标摆完,发现个严重的问题:这一堆说了啥呀!

因为没有刚性考核的KPI,因此很难讲清楚到底多大算好。你说播放次数越高越好吧,播放次数本身是个经常波动指标,今天高了明天低了,这么分析法得弄死自己,还没分析完为啥不好,丫指标又变好了!

而且但看一个指标也显得不科学,比如有的视频就是播放很多但人均时长很短,还有一堆人涌过来看,然后秒退的情况。

实际情况千奇百怪,连好/坏都没法评估,咋进一步分析:为啥好/为啥坏呢?

 2   解题思路

会导致晕头转向的核心问题,在于:没有明确目标。如果是销售的业务场景,目标很清晰:销售收入/GMV。但是运营的场景不见得都有如此清晰、刚性的目标。特别是内容运营,本身就有“放水养鱼”的作用,有好的内容积攒粉丝、吸引关注非常重要。

无刚性目标,导致建立评价标准很难。如果只看一个指标,比如播放量,似乎有失偏颇。如果看两个、三个、四个指标,比如播放人数、10%跳出人数、人均时长,则指标间相互交叉,情况错综复杂,很难下结论。

更不用说,很多新手会习惯性忽略建立标准环节。于是导致了大量铺陈数据,然后不知道下啥结论的晕头鸭子问题。如何在无刚性目标情况下,建立评价标准,读懂数据含义,是搭建体系的关键。

3   认识问题,从单指标开始

想理清头绪,当然得从一个指标开始。连一个指标的走势都没看清楚,就扯上二三四个,只会越看越晕。选第一个观察指标的时候,尽量选简单、直接、不用计算的指标,这样更容易看清楚情况,避免牵扯太多。因此在众多指标中,可以先看播放次数/播放人数(选一个)。

假设先看播放次数,对单指标而言,肯定是越多越好。播放量是内容运营的基础,连看都没人看,其他的更谈不上了。但是这里要注意,观察:播放量指标是否有周/月/日的规律。如果有规律性波动,就不能简单地说:昨天比今天高,所以昨天好(如下图)

假设播放量有周波动规律,则可以建立单指标的简单评价标准:

1、以周为单位观察,数值越大越好

2、以日为单位观察,数值越大越好

3、超过自身类型月平均水平,超过越多越好

这样就能对播放次数,这样的单个指标讲清楚:好/坏

4   从单指标到多指标

整明白了一个指标,可以加入其他指标。在加入其他指标的时候,要首先观察:两指标之间关系。有可能两指标相关系数高,有可能相关系数低。这两种情况下处理方法不同。

  • 相关系数高:比如播放次数和播放人数,两个指标很有可能高度相关。一个视频玩家短时间内可能只看1次就够了。高度相关的两个指标,在评价好坏时不需要重复评估,看一个就好了。这样能减少数据干扰,更容易得出结论(如下图)。

  • 相关系数低:比如播放次数和人均时长,不见得高度相关。很有可能有的视频太过标题党,标题太刺激,配图很色诱,把玩家骗进来结果发现货不对板。如果出现两个指标相关度低,就能用矩阵分析法,把视频分类(如下图)

经过这一步梳理以后,就能对两个指标情况做出判断。理论上播放次数越高越好,但人均时长不能低于一定水平,或者10%跳出用户比例不能超过一定水平,这样就能对每一期视频进行评价。有了评价,就能做出进一步分析。

5   从多指标到原因解读

评价了好/坏,就能进一步分析:为什么好、为什么坏。到这一步,就会发现,现有数据指标的问题:虽然看似一堆指标,可都是结果性指标。并不能直接从指标里推出:到底为啥用户喜欢看。这时优先考虑的是:补充数据,看看添加哪些数据能解释清楚问题。

首先想到的是视频本身的数据,视频本身可以有多种标签:

1、视频主题:讲哪一类游戏

2、视频内容:游戏八卦、玩法、比赛……

3、视频讲解:找技术高手还是找个美女亮腿……

4、视频时长:太长的可能中间关掉的多

5、发稿时间:选播放好的时间发

做内容运营,首先得对自己做的内容有清晰的了解,打好标签,再做其他工作。有了标签,单纯地结合标签分析结果指标,也可能得出一些有用的结论,比如:

● 5分钟比10分钟效果好

● 美女亮腿比男主持人效果好

● 讲比赛比讲八卦效果好

这些已经足够优化运营了。

更进一步的还可以结合用户画像来看,比如:

● 观察用户看别的游戏类视频行为,给用户喜欢的游戏类型,游戏内容贴标签

● 观察用户近期关注的热点内容、流行的梗

● 观察用户更喜欢技术宅还是美女

有了这些用户标签,可以查看:

● 目前观看视频的用户群体是否是目标群体

● 根据群体规模大的用户,制作新的内容

● 根据用户近期关注的话题、主播喜好,选话题和主持人

当然,并不见得投其所好一定有效,更有可能有“标题党蹭热度”的效果——播放次数很多但看一眼就跳出。所以最后还是得结合优化前后效果,做最终定论。

 6   小结

搭建数据分析体系可以很简单(如下图)

图片

真正阻碍搭建指标体系的,是:

1、数据间没逻辑,写的越多,看得越晕

2、没有刚性KPI做统领,不知道怎么评价好坏

3、只有结果指标,不能解释原因。

因此在观察一个业务的时候,一开始宁可看的指标少一点,先观察出规律,再看指标间关系,这样更容易让众多指标关系清楚,读出含义。本文用的方法还是先抓关键指标的方法,有的同学会问:如果一定用N个不相关的指标评估一个业务,该如何做呢?

 

责任编辑:武晓燕 来源: 接地气学堂
相关推荐

2022-02-24 11:49:18

数据分析业务数据

2021-04-21 12:05:45

分析数据运营

2021-01-20 06:02:24

数据分析驱动

2017-11-27 14:01:31

数据分析数字人才数字经济

2022-07-05 11:18:50

数据分析销售业绩

2023-10-10 11:41:28

数据分析项目

2022-10-19 11:30:30

数据分析项目TOB

2021-01-28 11:39:01

数据分析销售

2021-02-07 11:43:03

数据分析项目

2015-03-10 10:15:27

AppleWatch开发Swift

2019-11-04 15:22:28

Python区块链数据

2019-07-02 12:45:10

5G无线网络网络

2015-10-28 10:17:22

Html5前端优化

2021-02-22 17:29:41

体系数据分析模块

2023-05-15 12:56:32

运营数据分析

2015-04-08 10:44:27

微软win10

2022-03-18 21:29:37

人工智能AI

2024-10-09 11:57:34

2021-05-16 08:50:58

数据驱动业务

2015-06-24 10:51:10

iOS学习流程
点赞
收藏

51CTO技术栈公众号