自动驾驶汽车急转弯时车道线检测的3种技术

人工智能 无人驾驶
自动驾驶汽车需要感知不同颜色以及在不同的照明条件下的车道线,以便准确地检测车道。除了速度和汽车动力学特性外,还应该知道车道曲率,以确定停留在车道上所需的转向角。

 自动驾驶汽车需要感知不同颜色以及在不同的照明条件下的车道线,以便准确地检测车道。除了速度和汽车动力学特性外,还应该知道车道曲率,以确定停留在车道上所需的转向角。

[[385524]]

 

三种技术:

1.色彩空间

2.索贝尔算子

3.曲率半径

色彩空间

RGB色彩空间非常适合带有白色通道的图像。它在其他彩色车道上有局限性。因此我们可以探索其他颜色空间,例如HSV(色相,饱和度,值)和HLS(色相,亮度,饱和度)等。

色相表示与亮度变化无关的颜色。亮度和值是测量颜色的明暗度的不同方法。饱和度是色彩度的量度。带有黄色车道线的图像被分为RGB和HLS,如下所示。

 

仅R,G和S通道显示与黄色车道线相对应的高像素强度。蓝色通道的黄色像素强度为零。通过选择最佳通道和该通道的正确颜色阈值,我们现在可以更准确地识别黄色车道线,如下所示。

 

索贝尔算子

由于车道线是垂直的,因此我们可以以更智能的方式使用渐变来检测车道的陡峭边缘。将Sobel运算符应用于图像是一种在x或y方向上获取图像导数的方法。

通过选择x方向上的坡度(Sobel x运算符)并调整该坡度的强度,我们现在可以找到车道的那些部分,这是S通道无法检测到的(在前面的部分中),如下所示。

 

现在,我们可以结合以上每种技术(Sobel x和S通道)识别的像素,以在变化的照明条件下更准确地找到黄色车道线,如下所示。

 

即使我们的算法现在可以检测到不同颜色,在不同光照条件下的车道,但遇到突然的弯道时,它仍然可能会失败。

曲率半径

车道曲率的知识对于汽车停留在车道上是必不可少的。透视变换改变了我们的视角,可以从不同的视角和角度观看同一场景。鸟瞰,让我们将多项式拟合到车道线。然后,我们从多项式中提取车道曲率。

 

绘制直方图并在上图的左右两边找到峰值,可以得出左右车道的起始位置,如下所示。

 

滑动窗

使用起始位置,并在图像上应用滑动窗口技术,我们能够将多项式拟合到车道线,如下所示。

 

车道中心的曲率半径和偏移

像素被转换为米,并重新计算多项式拟合以确定以米为单位的曲率半径,如下所示。

 

结论

连续框架的车道线位置相似。因此,要在下一帧中查找车道像素,我们可以在一定距离内搜索先前检测到的车道线位置。

上述技术的应用使汽车能够在变化的照明条件(明亮的光线和阴影区域)和陡峭的弯道上准确识别不同颜色(黄色和白色)的车道,如下所示。

 

责任编辑:华轩 来源: 小白学视觉
相关推荐

2022-12-20 11:05:33

自动驾驶数据

2024-03-08 09:29:42

车道检测AI

2020-11-15 23:39:30

Python代码开发

2019-09-19 14:10:12

人工智能物联网自动驾驶

2021-11-12 16:28:13

自动驾驶音频技术

2020-01-09 08:42:23

自动驾驶AI人工智能

2021-11-18 22:43:56

自动驾驶技术安全

2021-11-15 23:53:54

自动驾驶机器物联网

2019-03-18 13:41:39

自动驾驶特朗普马斯克

2022-04-06 10:47:30

自动驾驶汽车安全

2022-05-21 23:46:16

自动驾驶雷达传感器

2022-12-30 09:57:54

自动驾驶应用

2020-09-19 16:54:23

自动驾驶汽车事故物联网

2018-09-04 19:30:29

人工智能自动驾驶机器学习

2024-06-21 15:12:14

2022-07-05 11:21:12

自动驾驶汽车技术

2021-10-26 15:31:28

自动驾驶技术安全

2021-01-26 21:26:10

自动驾驶AI人工智能

2023-06-27 12:50:06

自动驾驶技术

2021-12-01 10:21:27

自动驾驶技术人工智能
点赞
收藏

51CTO技术栈公众号