- 一、Linux 系统中的进程之间通信(IPC)
- 二、基于 Socket 通信的优点
- 三、MQTT 消息总线
- 四、嵌入式系统中如何利用 MQTT 消息总线
- 五、Mosquitto: 一个简单的测试代码
- 六、总结
- 七、资源下载
一、Linux 系统中的进程之间通信(IPC)
作为一名嵌入式软件开发人员来说,处理进程之间的通信是很常见的事情。从通信目的的角度来看,我们可以把进程之间的通信分成 3 种:
- 为了进程的调度: 可以通过信号来实现;
- 为了共享资源:可以通过互斥锁、信号量、读写锁、文件锁等来实现;
- 为了传递数据:可以通过共享内存、命名管道、消息队列、Socket来实现。
关于上面提到的这些、操作系统为我们提供的通信原语,网络上的各种资料、文章满天飞,在这里就不啰嗦了。在这些方法中应该如何选择呢?根据我个人的经验,贵精不贵多,认真挑选三四样东西就能完全满足日常的工作需要。
我们今天想讨论的问题主要是第 3 个:传递数据,在上面这几种传递数据的方法中,我最喜欢、最常用的就是 Socket 通信。
有些小伙伴可能会说:Socket 通信就是 TCP/IP 的那一套东西,还需要自己管理连接、对数据进行组包、分包,也是挺麻烦的。
没错,Socket 通信本身的确需要手动来处理这些底层的东西,但是我们可以给 Socket 穿上一层“外衣”:利用 MQTT 消息总线,在系统的各进程之间进行数据交互,下面我们就一一道来。
二、基于 Socket 通信的优点
这里我就不自己发挥了,直接引用陈硕老师的那本书《Linux 多线程服务端编程》这本书中的观点(第 65 页,3.4小节):
1. 跨主机,具有伸缩性
反正都是多进程了,如果一台机器的处理能力不够,就能用多台主机来处理。把进程分散到同一台局域网的多台机器上,程序改改 Host:Port 配置就能继续用。相反,文章开头部分列出的那些进程之间通信方式都不能跨机器,这就限制了可扩展性。
2. 操作系统会自动回收资源
TCP port 由一个进程独占,当程序意外退出时,操作系统会自动回收资源,不会给系统留下垃圾,程序重启之后能比较容易地恢复。
3. 可记录、可重现
两个进程通过 TCP 通信,如果一个崩溃了,操作系统会关闭连接,另一个进程几乎立刻就能感受到,可以快速 failover。当然应用层的心跳是必不可少的。(补充:操作系统本身对于 TCP 连接有一个保活时间,默认是 2 个小时,而且是针对全局的。)
4. 跨语言
服务端和客户端不必使用同一种编程语言。
1. 陈硕老师描述的是通用的 Socket 通信,因此客户端和服务端一般位于不同的物理机器上。
2. 在嵌入式开发中,一般都是用同一种编程语言,因此,跨语言这个有点可以忽略不计了。
三、MQTT 消息总线
1. MQTT 是一个通信的机制
对物联网领域熟悉的小伙伴,对于 MQTT 消息总线一定非常熟悉,目前几大物联网云平台(亚马孙、阿里云、华为云)都提供了 MQTT 协议的接入方式。
目前,学习 MQTT 最好的文档是 IBM 的在线手册:https://developer.ibm.com/zh/technologies/messaging/articles/iot-mqtt-why-good-for-iot/。
这里,我直接把一些重点信息列出来:
- MQTT协议轻量、简单、开放和易于实现;
- MQTT 是基于发布 (Publish)/订阅 (Subscribe)范式的消息协议;
- MQTT 工作在 TCP/IP协议族上;
- 有三种消息发布服务质量;
- 小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量;
MQTT 消息传输需要一个中间件,称为:Broker,其实也就是一个 Server。通信模型如下:
- MQTT Broker 需要首先启动;
- ClientA 和 ClientB 需要连接到 Broker;
- ClientA 订阅主题 topic_1,ClientB 订阅主题 topic_2;
- ClientA 往 topic_2 这个主题发送消息,就会被 ClientB 接收到;
- ClientB 往 topic_1 这个主题发送消息,就会被 ClientA 接收到;
基于 topic 主题的通信方式有一个很大的好处就是解耦,一个客户端可以订阅多个 topic,任何接入到总线的其他客户端都可以往这些 topic 中发送信息(一个客户端发送消息给自己也是可以的)。
2. MQTT 的实现
MQTT 只是一个协议而已,在 IBM 的在线文档中可以看到,有很多语言都实现了 MQTT 协议,包括:C/C++、Java、Python、C#、JavaScript、Go、Objective-C等等。那么对于嵌入式开发来说,使用比较多的是这几个实现:
- Mosquitto;
- Paho MQTT;
- wolfMQTT;
- MQTTRoute。
在下面,我们会重点介绍 Mosquitto 这个开源实现的编译和使用方式,这也是我在项目中使用最多的。
3. 在 MQTT 之上,设计自己的通信协议
从上面的描述中可以看出,MQTT 消息总线就是一个通信机制,为通信主体提供了一个传递数据的通道而已。
在这个通道之上,我们可以根据实际项目的需要,发送任何格式、编码的数据。在项目中,我们最常用的就是 json 格式的纯文本,这也是各家物联网云平台所推荐的方式。如果在文本数据中需要包含二进制数据,那就转成 BASE64 编码之后再发送。
四、嵌入式系统中如何利用 MQTT 消息总线
从上面的描述中可以看到,只要在服务端运行着一个 MQTT Broker 服务,每个连接到总线的客户端都可以灵活地相互收发数据。
我们可以把这个机制应用在嵌入式应用程序的设计中:MQTT Broker 作为一个独立的服务运行在嵌入式系统本地,其他需要交互的进程,只要连接到本地的这个 Broker,就可以相互发送数据了。运行模型如下:
每一个进程只需要订阅一个固定的 topic(比如:自己的 client Id),那么其他进程如果想要发送数据给它,就直接发送到这个 topic 即可。
1. 一个嵌入式系统的通信框架
我之前开发过一个环境监测系统,采集大气中的 PM2.5、PM10等污染物参数,在 Contex A8 平台下开发,需要实现数据记录(数据库)、UI 监控界面等功能。
污染物的数据采样硬件模块是第三方公司提供的,我们只需要通过该模块提供的串口协议去控制采样设备、接收采样数据即可。最终设计的通信模型如下:
- UI 进程通过消息总线,发送控制指令给采样控制进程,采样控制进程接收到后通过串口发送控制指令给采样模块;
- 采样控制进程从串口接收采样模块发来的PM2.5等数据后,把所有的数据发送到消息总线上指定的 topic 中;
- UI 进程程订阅该 topic,接收到数据后,显示在屏幕上;
- 数据库进程也订阅该 topic,接收到数据后,把数据存储在 SQLite 数据库中;
在这个产品中,核心进程是采样控制进程,负责与采样模块的交互。通过把 UI 处理、数据库处理设计成独立的进程,降低了系统的复杂性,即使这 2 个进程崩溃了,也不会影响到核心的采样控制进程。
比如:如果 UI 进程出现错误崩溃了,会立刻重启,启动之后通过缓存信息知道此刻正在执行采样工作,于是 UI 进程立刻连接到消息总线、进入采样数据显示界面,继续接收、显示采样控制进程发出的PM2.5等数据。
这个通信模型还有另外一个有点:可扩展性。
在项目开发的后期,甲方说需要集成一个第三方的气体模块,用来采集大气中NO、SO2等参数,通信方式是 RS485。
此时扩展这个功能模块就异常简单了,直接写一个独立的气体参数进程,接入到消息总线上。这个进程通过 RS485,从第三方气体模块接收到NO、SO2等气体参数时,直接往消息总线上的某个 topic 一丢,UI进程、数据库进程订阅这个 topic,就可以立刻接收到气体相关的数据了。
此外,这个设计模型还有其他一些优点:
- 并行开发:每个进程可以由不同的人员并行开发,只要相互之间定义好通信协议即可;
- 调试方便:由于发送的数据都是 manual readable,在开发阶段,可以在 PC 机上专门写一个监控程序,接入到嵌入式系统中的 MQTT Broker 之后,这样就可以接收到所有进程发出的消息;
- 通信安全:在产品 release 之后,为了防止其他人偷听数据(比如 2 中的调试进程),可以为 MQTT Broker 指定一个配置文件,只能允许本地进程(127.0.0.1)连接到消息总线上。
2. 稍微复杂一点的通信模型
在刚才描述的嵌入式系框架设计中,每一个进程都是运行在本地的,所有的消息也都是在系统内进行收发。那么,如果需要把数据传输到云端、或者需要从云端接收一些控制指令,又该如何设计呢?
加入一个 MQTT Bridge 桥接模块即可!也就是再增加一个进程,这个进程同时连接到云端的 MQTT Broker 和本地的 MQTT Broker,通信模型如下:
MQTT Bridge 接收到云端发来的指令时,转发到本地的消息总线上;
MQTT Bridge 接收到本地的消息时,转发到云端的消息总线上。
五、Mosquitto: 一个简单的测试代码
上面的内容主要讨论的是设计的思想,具体到代码层面,我一般使用的是 Mosquitto 这个开源的实现。
在 Linux 系统中安装、测试都非常方便,下面就简单说明一下。
1. 直接通过 apt 来安装、测试
可以参考这个文档(https://www.Vultr.com/docs/how-to-install-mosquitto-mqtt-broker-server-on-ubuntu-16-04)来安装测试。
(1) 安装
- sudo apt-add-repository ppa:mosquitto-dev/mosquitto-ppa
- sudo apt-get update
- sudo apt-get install mosquitto
- sudo apt-get install mosquitto-clients
(2) 测试
mosquitto broker 在安装之后会自动启动,可以用 netstat 查看 1883 端口来确认一下。
接收端:连接到 broker 之后,订阅 "test" 这个 topic。
- mosquitto_sub -t "test"
发送端:连接到 broker 之后,往 "test" 这个 topic 发送字符串 “hello”。
- mosquitto_pub -m "hello" -t "test"
当发送端执行 mosquitto_pub 时,在接收端的终端窗口中,就可以接收到 “hello” 这个字符串。
2. 通过源码来手动编译、测试
通过 apt 来安装主要是用来简单的学习和测试,如果要在项目开发中使用 Mosquitto,肯定需要手动编译,得到头文件和库文件,然后复制到应用程序中使用。
(1) 手动编译、安装 Mosquitto
我的开发环境是:
编译器:gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
- Mosquitto 版本:mosquitto-1.4.9
- mosquitto-1.4.9 可以到官方网站下载,也可以从文末的网盘中下载,你也可以尝试更高的版本。
编译、安装指令:
- make
- make install prefix=$PWD/install
成功安装之后,可以在当前目录的 install 文件夹下看到输出文件:
- bin:mqtt 客户端程序;
- include:应用程序需要 include 的头文件;
- lib:应用程序需要链接的库文件;
- sbin:mqtt broker 服务程序。
在编译过程中,如果遇到一些诸如:ares.h、uuid.h 等依赖文件找不到的错误,只需要通过 apt 指令安装响应的开发包即可。
(2) 最简单的 mosquitto 客户端代码
在 mosquitto 源码中,提供了丰富的 Sample 示例。如果你不乐意去探索,可以直接下载文末的这个网盘中的 Demo 示例程序,这个程序连接到消息总线上之后,订阅 “topic_01” 这个主题。当然,你也可以修改代码去发送消息(调用:mosquitto_publish 这个函数)。
进入 c_mqtt 示例代码目录之后,可以看到已经包含了 bin、include 和 lib 目录,它们就是从上面(1)中安装目录 install 中复制过来的。
执行 make 指令之后,即可编译成功,得到可执行文件:mqtt_client。
测试过程如下:
Step1: 启动 MQTT Broker
在第 1 个终端窗口中,启动 sbin/mosquitto 这个 Broker 程序。如果你在上面测试中已经启动了一个 broker,需要先 kill 掉之前的那个 broker,因为它们默认都使用 1883 这个端口,无法共存。
Step2: 启动接收端程序 mqtt_client
在第 2 个终端窗口中,启动 mqtt_client 也就是我们的示例代码编译得到的可执行程序,它订阅的 topic 是 “topic_01”。
- ./mqtt_client 127.0.0.1 1883
- 参数 1: Broker 服务的 IP 地址,因为都是在本地系统中,所以是 127.0.0.1;
- 参数 2: 端口号,一般默认是1883。
Step3: 启动发送端程序 bin/mosquitto_pub
在第 3 个终端窗口中,启动 bin/mosquitto_pub,命令如下:
- ./mosquitto_pub -h 127.0.0.1 -p 1883 -m "hello123" -t "topic_01"
- 参数 -h:Broker 服务的 IP 地址,因为都是在本地系统中,所以是 127.0.0.1;参数 -p:端口号 1883;
- 参数 -m:发送的消息内容;
- 参数 -t:发送的主题 topic。
此时,可以在第 2 个终端窗口(mqtt_client)中打印出接收到的消息。
六、总结
这篇文章主要介绍了嵌入式系统中的一个设计模式:通过消息总线来实现进程之间的通信,并介绍了 Mosquitto 这个开源实现。
在实际的项目中,还需要更加严格的权限控制,比如:在接入消息总线时提供用户名、密码、设备证书,客户端的名称必须满足指定的格式,订阅的 topic 必须符合一定的格式等等。
在下一篇文章中,我们继续讨论这个话题,给出一个更具体、更实用的 Demo 例程。
七、资源下载
1. mosquitto-1.4.9.tgz
链接:https://pan.baidu.com/s/1izQ3dAlGbHiHwDvKnOSfyg
密码:dozt
2. Mosquitto Demo 示例代码
链接:https://pan.baidu.com/s/1M-dU3xapNbKyk2w07MtDyw
密码:aup3
本文转载自微信公众号「IOT物联网小镇」,可以通过以下二维码关注。转载本文请联系IOT物联网小镇公众号。