2021年对数据的7种预测

大数据
众所周知,人类在预测未来(尤其是从长远来看)方面很差。但是,它仍然是有用的练习。让我们看看我认为2021年将为数据科学,工程学和战略带来什么。

众所周知,人类在预测未来(尤其是从长远来看)方面很差。但是,它仍然是有用的练习。让我们看看我认为2021年将为数据科学,工程学和战略带来什么。该列表没有特别的顺序,主要集中在我在德国的观察:

[[379956]]

1. 角色稳定

在过去的几年中,出现了新的数据角色,例如机器学习工程师,数据产品所有者等。这些还没有完全流行起来,大型公司仍在求助于数据科学家的传统角色。我认为,为员工和雇主提供更多职位及其相关技能是一个好主意。

2. 合并MLOps工具

去年是MLOPs工具和创业公司蓬勃发展的一年。尽管如此,许多这样的公司仅提供相同产品的变体。2021年将淘汰许多杂草,而领先者将占领大部分市场。

3. DataOps大肆宣传

敏捷和精益方法在数据科学和工程中的应用将变得更加广泛。

4. 数据策略已成为主流

在过去的两年中,我一直在讨论这个主题,但是这份工作描述仍然很少见,尤其是在欧洲。但是,这并不意味着该角色不会由现有人员担任。他们可能只是在其他区域下工作。不过,该领域对于成功交付数据项目至关重要,我对进一步的增长和接受表示乐观。

5. 生产中的xAI

xAI长期以来一直在攀升Gartner Hype曲线,现在达到了开始交付成果的地步。该子领域的成功仍然存在障碍(例如需要不稳定的开源和神秘技能)。尽管如此,新的工具正在出现,以将其推向生产。

6. 进一步的数据工程爆炸式增长

没有它的基础-数据工程,任何数据科学项目都不会成功。公司认识到这一点很晚,并且在2021年仍然会赶上来。

7. 智能数据清理和ETL工具

每个人都知道花费在清理数据上的时间。到目前为止,使用工具解决这是一个棘手的问题,但是诸如Cloud Data Prep之类的新开发将催生竞争对手。

考虑到这个清单,我想在数据方面对2021年表示两个希望。首先,我希望整个领域(尤其是其中的ML部分)变得“无聊”,但有用。其次,我们开始使用这项出色的技术来解决我们面临的紧迫问题,并迈向更加乐观和雄心勃勃的未来。

注意:本文最初出现在https://boyanangelov.com/blog/data-predictions-2021/

原文链接:https://towardsdatascience.com/7-predictions-for-data-in-2021-3b7fbc92b71f

 

责任编辑:赵宁宁 来源: 今日头条
相关推荐

2021-01-29 09:02:03

物联网IoT

2020-12-24 06:57:13

用户体验虚拟现实人工智能

2020-12-21 10:50:27

云计算公共云

2019-12-20 09:35:40

数据中心IT技术私有云

2021-01-07 17:11:16

数据科学数据分析IT

2021-03-01 10:31:02

首席信息官远程工作技术

2021-01-18 11:06:38

数据分析数据科学大数据

2021-01-15 10:25:22

大数据云计算大数据分析

2021-01-08 10:09:29

医疗数字化转型数字化

2021-01-13 13:30:58

2021-03-03 11:19:10

云计算云计算战略混合云

2021-02-05 15:01:40

开发软件职位

2012-12-24 10:09:56

大数据数据分析虚拟化

2020-12-21 10:26:21

云安全云计算云服务

2023-12-08 16:34:21

2024-01-04 16:20:35

2021-02-05 08:09:19

前端框架开发

2021-02-01 15:39:27

云原生Kubernetes云本地开发

2020-12-24 14:47:16

编程语言开发Web

2020-01-07 13:13:06

Kubernetes容器开发
点赞
收藏

51CTO技术栈公众号