动态规划:关于01背包问题,你该了解这些!

开发 前端
对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

[[376845]]

对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

如果这几种背包,分不清,我这里画了一个图,如下:

至于背包九讲其其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了。

之前可能有些录友已经可以熟练写出背包了,但只要把这个文章仔细看完,相信你会意外收获!

01 背包

有N件物品和一个最多能被重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

[[376846]]

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2^n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

  重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

二维dp数组01背包

依然动规五部曲分析一波。

确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

只看这个二维数组的定义,大家一定会有点懵,看下面这个图:

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

2.确定递推公式

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j],

  • 由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]
  • 由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3.dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

首先从dp[i][j]的定义触发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

再看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

代码如下:

  1. // 倒叙遍历 
  2. for (int j = bagWeight; j >= weight[0]; j--) { 
  3.     dp[0][j] = dp[0][j - weight[0]] + value[0]; // 初始化i为0时候的情况 

大家应该发现,这个初始化为什么是倒叙的遍历的?正序遍历就不行么?

正序遍历还真就不行,dp[0][j]表示容量为j的背包存放物品0时候的最大价值,物品0的价值就是15,因为题目中说了**每个物品只有一个!**所以dp[0][j]如果不是初始值的话,就应该都是物品0的价值,也就是15。

但如果一旦正序遍历了,那么物品0就会被重复加入多次!例如代码如下:

  1. // 正序遍历 
  2. for (int j = weight[0]; j <= bagWeight; j++) { 
  3.     dp[0][j] = dp[0][j - weight[0]] + value[0]; 

例如dp[0][1] 是15,到了dp[0][2] = dp[0][2 - 1] + 15; 也就是dp[0][2] = 30 了,那么就是物品0被重复放入了。

所以一定要倒叙遍历,保证物品0只被放入一次!这一点对01背包很重要,后面在讲解滚动数组的时候,还会用到倒叙遍历来保证物品使用一次!

此时dp数组初始化情况如图所示:

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

dp[i][j]在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,因为0就是最小的了,不会影响取最大价值的结果。

如果题目给的价值有负数,那么非0下标就要初始化为负无穷了。例如:一个物品的价值是-2,但对应的位置依然初始化为0,那么取最大值的时候,就会取0而不是-2了,所以要初始化为负无穷。

这样才能让dp数组在递归公式的过程中取最大的价值,而不是被初始值覆盖了。

最后初始化代码如下:

  1. // 初始化 dp 
  2. vector<vector<int>> dp(weight.size() + 1, vector<int>(bagWeight + 1, 0)); 
  3. for (int j = bagWeight; j >= weight[0]; j--) { 
  4.     dp[0][j] = dp[0][j - weight[0]] + value[0]; 

费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的。

4.确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!!但是先遍历物品更好理解。

那么我先给出先遍历物品,然后遍历背包重量的代码。

  1. // weight数组的大小 就是物品个数 
  2. for(int i = 1; i < weight.size(); i++) { // 遍历物品 
  3.     for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量  
  4.         if (j < weight[i]) dp[i][j] = dp[i - 1][j]; // 这个是为了展现dp数组里元素的变化 
  5.         else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
  6.          
  7.     } 

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

例如这样:

  1. // weight数组的大小 就是物品个数 
  2. for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量 
  3.     for(int i = 1; i < weight.size(); i++) { // 遍历物品 
  4.         if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
  5.         else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
  6.     } 

为什么也是可以的呢?

要理解递归的本质和递推的方向。

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正左和正上两个方向),那么先遍历物品,再遍历背包的过程如图所示:

再来看看先遍历背包,再遍历物品呢,如图:

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了。

5.举例推导dp数组

来看一下对应的dp数组的数值,如图:

最终结果就是dp[2][4]。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。

主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。

完整C++测试代码

  1. void test_2_wei_bag_problem1() { 
  2.     vector<int> weight = {1, 3, 4}; 
  3.     vector<int> value = {15, 20, 30}; 
  4.     int bagWeight = 4; 
  5.  
  6.     // 二维数组 
  7.     vector<vector<int>> dp(weight.size() + 1, vector<int>(bagWeight + 1, 0)); 
  8.  
  9.     // 初始化  
  10.     for (int j = bagWeight; j >= weight[0]; j--) { 
  11.         dp[0][j] = dp[0][j - weight[0]] + value[0]; 
  12.     } 
  13.  
  14.     // weight数组的大小 就是物品个数 
  15.     for(int i = 1; i < weight.size(); i++) { // 遍历物品 
  16.         for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量 
  17.             if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
  18.             else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
  19.  
  20.         } 
  21.     } 
  22.  
  23.     cout << dp[weight.size() - 1][bagWeight] << endl; 
  24.  
  25. int main() { 
  26.     test_2_wei_bag_problem1(); 

以上遍历的过程也可以这么写:

  1. // 遍历过程 
  2. for(int i = 1; i < weight.size(); i++) { // 遍历物品 
  3.     for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量 
  4.         if (j - weight[i] >= 0) { 
  5.             dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
  6.         } 
  7.     } 

这么写打印出来的dp数据这就是这样:

空出来的0其实是用不上的,版本一 能把完整的dp数组打印出来,出来我用版本一来讲解。

总结

讲了这么多才刚刚把二维dp的01背包讲完,这里大家其实可以发现最简单的是推导公式了,推导公式估计看一遍就记下来了,但难就难在如何初始化和遍历顺序上。

可能有的同学并没有注意到初始化 和 遍历顺序的重要性,我们后面做力扣上背包面试题目的时候,大家就会感受出来了。

本文转载自微信公众号「 代码随想录」,可以通过以下二维码关注。转载本文请联系代码随想录公众号。

 

责任编辑:武晓燕 来源: 代码随想录
相关推荐

2021-02-09 09:55:24

动态规划

2021-01-04 08:37:53

动态规划DP

2022-01-17 13:31:53

value背包解法

2021-07-13 14:03:24

二叉树满二叉树完全二叉树

2021-04-27 07:52:18

跳槽数据分析

2021-05-18 08:02:40

面试面试问题职业规划

2018-10-15 12:42:21

2020-10-29 10:26:28

DevOps软件自动化

2020-04-03 18:43:21

大数据Hadoop数据

2021-05-11 07:39:58

跳槽谈薪工作

2021-04-13 07:58:38

背包代码模式

2021-03-15 12:00:19

Kubernetes微服务架构

2018-07-05 14:33:03

公有云隐私数据

2021-03-15 06:04:47

斐波那契数列背包问题算法

2021-03-29 09:37:17

SpringBoot常用注解Spring Boot

2016-03-18 19:03:35

认知计算IBM

2021-04-21 13:29:42

内存安全Java

2017-06-14 15:07:58

机房管理服务器

2022-11-04 13:06:47

JVMJava程序

2015-03-24 14:11:41

程序员
点赞
收藏

51CTO技术栈公众号