首先,大数据经过多年的发展已经形成了一个完整的产业链和技术链,大数据的产业链是围绕技术链来打造的,而大数据的技术链则围绕数据价值化这个中心来展开,涉及到数据的采集、存储、安全、分析、呈现和应用,所以当前的大数据已经不仅仅是一个概念了,而是代表了一系列技术的整合体。
从大数据的技术链来看,数据分析是其中的重要一环,也是目前大数据价值化的核心环节,所以很多人也把大数据就理解为数据分析了。虽然数据分析比较重要,但是在大数据时代,要想学习数据分析也需要掌握一系列大数据技术,包括大数据平台知识、统计学知识和机器学习知识,目前统计学和机器学习是大数据分析的两种基本形式。
从岗位划分上来看,大数据领域目前的岗位主要集中在三个领域,分别是大数据开发岗、大数据分析岗和大数据运维岗位,目前大数据开发岗的人才缺口相对比较大,所以目前很多大数据方向的研究生也会选择开发岗,虽然大数据分析岗位也不少,但是岗位竞争还是非常激烈的,很多博士研究生也比较愿意选择分析岗(算法岗)。
从知识结构上来看,学习大数据分析和学习大数据开发还是有区别的,大数据开发比较侧重程序设计能力,而数据分析则比较侧重算法知识的学习和运用,目前很多团队也要求算法工程师要具备一定的编程能力。
最后,学习数据分析对于数学基础的要求相对比较高,所以如果数学基础比较薄弱,可以考虑一下开发方向和运维方向。