Hive基于UDF进行文本分词

运维 数据库运维
Hive作为一个sql查询引擎,自带了一些基本的函数,比如count(计数),sum(求和),有时候这些基本函数满足不了我们的需求,这时候就要写hive hdf(user defined funation),又叫用户自定义函数。

 [[361269]]

本文转载自微信公众号「Java大数据与数据仓库」,作者刘不二 。转载本文请联系Java大数据与数据仓库公众号。  

UDF 简介

Hive作为一个sql查询引擎,自带了一些基本的函数,比如count(计数),sum(求和),有时候这些基本函数满足不了我们的需求,这时候就要写hive hdf(user defined funation),又叫用户自定义函数。编写Hive UDF的步骤:

  • 添加相关依赖,创建项目,这里我用的管理工具是maven,所以我创建的也是一个maven 项目(这个时候你需要选择合适的依赖版本,主要是Hadoop 和 Hive,可以使用hadoop version和hive --version 来分别查看版本)
  • 继承org.apache.hadoop.hive.ql.exec.UDF类,实现evaluate方法,然后打包;
  • 使用 add方法添加jar 包到分布式缓存,如果jar包是上传到$HIVE_HOME/lib/目录以下,就不需要执行add命令了;
  • 通过create temporary function创建临时函数,不加temporary就创建了一个永久函数;
  • 在SQL 中使用你创建的UDF;

UDF分词

这个是一个比较常见的场景,例如公司的产品有每天都会产生大量的弹幕或者评论,这个时候我们可能会想去分析一下大家最关心的热点话题是什么,或者是我们会分析最近一段时间的网络趋势是什么,但是这里有一个问题就是你的词库建设的问题,因为你使用通用的词库可能不能达到很好的分词效果,尤其有很多网络流行用语它是不在词库里的,还有一个就是停用词的问题了,因为很多时候停用词是没有意义的,所以这里我们需要将其过滤,而过滤的方式就是通过停用词词表进行过滤。

这个时候我们的解决方案主要有两种,一种是使用第三方提供的一些词库,还有一种是自建词库,然后有专人去维护,这个也是比较常见的一种情况。

最后一个就是我们使用的分词工具,因为目前主流的分词器很多,选择不同的分词工具可能对我们的分词结果有很多影响。

分词工具

1:Elasticsearch的开源中文分词器 IK Analysis(Star:2471)

IK中文分词器在Elasticsearch上的使用。原生IK中文分词是从文件系统中读取词典,es-ik本身可扩展成从不同的源读取词典。目前提供从sqlite3数据库中读取。es-ik-plugin-sqlite3使用方法:1. 在elasticsearch.yml中设置你的sqlite3词典的位置:ik_analysis_db_path: /opt/ik/dictionary.db

2:开源的java中文分词库 IKAnalyzer(Star:343)

IK Analyzer 是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始, IKAnalyzer已经推出了4个大版本。最初,它是以开源项目Luence为应用主体的,结合词典分词和文法分析算法的中文分词组件。从3.0版本开始,IK发展为面向Java的公用分词组件,独立于Lucene项目

3:java开源中文分词 Ansj(Star:3019)

Ansj中文分词 这是一个ictclas的java实现.基本上重写了所有的数据结构和算法.词典是用的开源版的ictclas所提供的.并且进行了部分的人工优化 分词速度达到每秒钟大约200万字左右,准确率能达到96%以上。

目前实现了.中文分词. 中文姓名识别 . 词性标注、用户自定义词典,关键字提取,自动摘要,关键字标记等功能。

可以应用到自然语言处理等方面,适用于对分词效果要求高的各种项目.

4:结巴分词 ElasticSearch 插件(Star:188)

elasticsearch官方只提供smartcn这个中文分词插件,效果不是很好,好在国内有medcl大神(国内最早研究es的人之一)写的两个中文分词插件,一个是ik的,一个是mmseg的

5:Java分布式中文分词组件 - word分词(Star:672)

word分词是一个Java实现的分布式的中文分词组件,提供了多种基于词典的分词算法,并利用ngram模型来消除歧义。能准确识别英文、数字,以及日期、时间等数量词,能识别人名、地名、组织机构名等未登录词

6:Java开源中文分词器jcseg(Star:400)

Jcseg是什么?Jcseg是基于mmseg算法的一个轻量级开源中文分词器,同时集成了关键字提取,关键短语提取,关键句子提取和文章自动摘要等功能,并且提供了最新版本的lucene, solr, elasticsearch的分词接口, Jcseg自带了一个 jcseg.properties文件…

7:中文分词库Paoding

庖丁中文分词库是一个使用Java开发的,可结合到Lucene应用中的,为互联网、企业内部网使用的中文搜索引擎分词组件。Paoding填补了国内中文分词方面开源组件的空白,致力于此并希翼成为互联网网站首选的中文分词开源组件。Paoding中文分词追求分词的高效率和用户良好体验。

8:中文分词器mmseg4j

mmseg4j 用 Chih-Hao Tsai 的 MMSeg 算法(http://technology.chtsai.org/mmseg/ )实现的中文分词器,并实现 lucene 的 analyzer 和 solr 的TokenizerFactory 以方便在Lucene和Solr中使…

9:中文分词Ansj(Star:3015)

Ansj中文分词 这是一个ictclas的java实现.基本上重写了所有的数据结构和算法.词典是用的开源版的ictclas所提供的.并且进行了部分的人工优化 内存中中文分词每秒钟大约100万字(速度上已经超越ictclas) 文件读取分词每秒钟大约30万字 准确率能达到96%以上 目前实现了….

10:Lucene中文分词库ICTCLAS4J

ictclas4j中文分词系统是sinboy在中科院张华平和刘群老师的研制的FreeICTCLAS的基础上完成的一个java开源分词项目,简化了原分词程序的复杂度,旨在为广大的中文分词爱好者一个更好的学习机会。

代码实现

第一步:引入依赖

这里我们引入了两个依赖,其实是两个不同分词工具

  1. <dependency> 
  2.   <groupId>org.ansj</groupId> 
  3.   <artifactId>ansj_seg</artifactId> 
  4.   <version>5.1.6</version> 
  5.   <scope>compile</scope> 
  6. </dependency> 
  7. <dependency> 
  8.   <groupId>com.janeluo</groupId> 
  9.   <artifactId>ikanalyzer</artifactId> 
  10.   <version>2012_u6</version> 
  11. </dependency> 

在开始之前我们先写一个demo 玩玩,让大家有个基本的认识

  1. @Test 
  2. public  void testAnsjSeg() { 
  3.     String str = "我叫李太白,我是一个诗人,我生活在唐朝" ; 
  4.       // 选择使用哪种分词器 BaseAnalysis ToAnalysis NlpAnalysis  IndexAnalysis 
  5.     Result result = ToAnalysis.parse(str); 
  6.     System.out.println(result); 
  7.     KeyWordComputer kwc = new KeyWordComputer(5); 
  8.     Collection<Keyword> keywords = kwc.computeArticleTfidf(str); 
  9.     System.out.println(keywords); 

输出结果

  1. 我/r,叫/v,李太白/nr,,/w,我/r,是/v,一个/m,诗人/n,,/w,我/r,生活/vn,在/p,唐朝/t 
  2. [李太白/24.72276098504223, 诗人/3.0502185968368885, 唐朝/0.8965677022546215, 生活/0.6892230219652541] 

[李太白/24.72276098504223, 诗人/3.0502185968368885, 唐朝/0.8965677022546215, 生活/0.6892230219652541]

第二步:引入停用词词库

因为是停用词词库,本身也不是很大,所以我直接放在项目里了,当然你也可以放在其他地方,例如HDFS 上

第三步:编写UDF

代码很简单我就不不做详细解释了,需要注意的是GenericUDF 里面的一些方法的使用规则,至于代码设计的好坏以及还有什么改进的方案我们后面再说,下面两套实现的思路几乎是一致的,不一样的是在使用的分词工具上的不一样

ansj的实现

  1. /** 
  2.  * Chinese words segmentation with user-dict in com.kingcall.dic 
  3.  * use Ansj(a java open source analyzer) 
  4.  */ 
  5.  
  6. // 这个信息就是你每次使用desc 进行获取函数信息的时候返回的 
  7. @Description(name = "ansj_seg", value = "_FUNC_(str) - chinese words segment using ansj. Return list of words."
  8.         extended = "Example: select _FUNC_('我是测试字符串') from src limit 1;\n" 
  9.                 + "[\"我\", \"是\", \"测试\", \"字符串\"]"
  10.  
  11. public class AnsjSeg extends GenericUDF { 
  12.     private transient ObjectInspectorConverters.Converter[] converters; 
  13.     private static final String userDic = "/app/stopwords/com.kingcall.dic"
  14.  
  15.     //load userDic in hdfs 
  16.     static { 
  17.         try { 
  18.             FileSystem fs = FileSystem.get(new Configuration()); 
  19.             FSDataInputStream in = fs.open(new Path(userDic)); 
  20.             BufferedReader br = new BufferedReader(new InputStreamReader(in)); 
  21.  
  22.             String line = null
  23.             String[] strs = null
  24.             while ((line = br.readLine()) != null) { 
  25.                 line = line.trim(); 
  26.                 if (line.length() > 0) { 
  27.                     strs = line.split("\t"); 
  28.                     strs[0] = strs[0].toLowerCase(); 
  29.                     DicLibrary.insert(DicLibrary.DEFAULT, strs[0]); //ignore nature and freq 
  30.                 } 
  31.             } 
  32.             MyStaticValue.isNameRecognition = Boolean.FALSE
  33.             MyStaticValue.isQuantifierRecognition = Boolean.TRUE
  34.         } catch (Exception e) { 
  35.             System.out.println("Error when load userDic" + e.getMessage()); 
  36.         } 
  37.     } 
  38.  
  39.     @Override 
  40.     public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException { 
  41.         if (arguments.length < 1 || arguments.length > 2) { 
  42.             throw new UDFArgumentLengthException( 
  43.                     "The function AnsjSeg(str) takes 1 or 2 arguments."); 
  44.         } 
  45.  
  46.         converters = new ObjectInspectorConverters.Converter[arguments.length]; 
  47.         converters[0] = ObjectInspectorConverters.getConverter(arguments[0], PrimitiveObjectInspectorFactory.writableStringObjectInspector); 
  48.         if (2 == arguments.length) { 
  49.             converters[1] = ObjectInspectorConverters.getConverter(arguments[1], PrimitiveObjectInspectorFactory.writableIntObjectInspector); 
  50.         } 
  51.         return ObjectInspectorFactory.getStandardListObjectInspector(PrimitiveObjectInspectorFactory.writableStringObjectInspector); 
  52.     } 
  53.  
  54.  
  55.     @Override 
  56.     public Object evaluate(DeferredObject[] arguments) throws HiveException { 
  57.         boolean filterStop = false
  58.         if (arguments[0].get() == null) { 
  59.             return null
  60.         } 
  61.         if (2 == arguments.length) { 
  62.             IntWritable filterParam = (IntWritable) converters[1].convert(arguments[1].get()); 
  63.             if (1 == filterParam.get()) filterStop = true
  64.         } 
  65.  
  66.         Text s = (Text) converters[0].convert(arguments[0].get()); 
  67.         ArrayList<Text> result = new ArrayList<>(); 
  68.  
  69.         if (filterStop) { 
  70.             for (Term words : DicAnalysis.parse(s.toString()).recognition(StopLibrary.get())) { 
  71.                 if (words.getName().trim().length() > 0) { 
  72.                     result.add(new Text(words.getName().trim())); 
  73.                 } 
  74.             } 
  75.         } else { 
  76.             for (Term words : DicAnalysis.parse(s.toString())) { 
  77.                 if (words.getName().trim().length() > 0) { 
  78.                     result.add(new Text(words.getName().trim())); 
  79.                 } 
  80.             } 
  81.         } 
  82.         return result; 
  83.     } 
  84.  
  85.  
  86.     @Override 
  87.     public String getDisplayString(String[] children) { 
  88.         return getStandardDisplayString("ansj_seg", children); 
  89.     } 

ikanalyzer的实现

  1. @Description(name = "ansj_seg", value = "_FUNC_(str) - chinese words segment using Iknalyzer. Return list of words."
  2.         extended = "Example: select _FUNC_('我是测试字符串') from src limit 1;\n" 
  3.                 + "[\"我\", \"是\", \"测试\", \"字符串\"]"
  4. public class IknalyzerSeg extends GenericUDF { 
  5.     private transient ObjectInspectorConverters.Converter[] converters; 
  6.     //用来存放停用词的集合 
  7.     Set<String> stopWordSet = new HashSet<String>(); 
  8.  
  9.     @Override 
  10.     public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException { 
  11.         if (arguments.length < 1 || arguments.length > 2) { 
  12.             throw new UDFArgumentLengthException( 
  13.                     "The function AnsjSeg(str) takes 1 or 2 arguments."); 
  14.         } 
  15.         //读入停用词文件 
  16.         BufferedReader StopWordFileBr = null
  17.         try { 
  18.             StopWordFileBr = new BufferedReader(new InputStreamReader(new FileInputStream(new File("stopwords/baidu_stopwords.txt")))); 
  19.             //初如化停用词集 
  20.             String stopWord = null
  21.             for(; (stopWord = StopWordFileBr.readLine()) != null;){ 
  22.                 stopWordSet.add(stopWord); 
  23.             } 
  24.         } catch (FileNotFoundException e) { 
  25.             e.printStackTrace(); 
  26.         } catch (IOException e) { 
  27.             e.printStackTrace(); 
  28.         } 
  29.  
  30.         converters = new ObjectInspectorConverters.Converter[arguments.length]; 
  31.         converters[0] = ObjectInspectorConverters.getConverter(arguments[0], PrimitiveObjectInspectorFactory.writableStringObjectInspector); 
  32.         if (2 == arguments.length) { 
  33.             converters[1] = ObjectInspectorConverters.getConverter(arguments[1], PrimitiveObjectInspectorFactory.writableIntObjectInspector); 
  34.         } 
  35.         return ObjectInspectorFactory.getStandardListObjectInspector(PrimitiveObjectInspectorFactory.writableStringObjectInspector); 
  36.  
  37.     } 
  38.  
  39.     @Override 
  40.     public Object evaluate(DeferredObject[] arguments) throws HiveException { 
  41.         boolean filterStop = false
  42.         if (arguments[0].get() == null) { 
  43.             return null
  44.         } 
  45.         if (2 == arguments.length) { 
  46.             IntWritable filterParam = (IntWritable) converters[1].convert(arguments[1].get()); 
  47.             if (1 == filterParam.get()) filterStop = true
  48.         } 
  49.         Text s = (Text) converters[0].convert(arguments[0].get()); 
  50.         StringReader reader = new StringReader(s.toString()); 
  51.         IKSegmenter iks = new IKSegmenter(reader, true); 
  52.         List<Text> list = new ArrayList<>(); 
  53.         if (filterStop) { 
  54.             try { 
  55.                 Lexeme lexeme; 
  56.                 while ((lexeme = iks.next()) != null) { 
  57.                     if (!stopWordSet.contains(lexeme.getLexemeText())) { 
  58.                         list.add(new Text(lexeme.getLexemeText())); 
  59.                     } 
  60.                 } 
  61.             } catch (IOException e) { 
  62.             } 
  63.         } else { 
  64.             try { 
  65.                 Lexeme lexeme; 
  66.                 while ((lexeme = iks.next()) != null) { 
  67.                     list.add(new Text(lexeme.getLexemeText())); 
  68.                 } 
  69.             } catch (IOException e) { 
  70.             } 
  71.         } 
  72.         return list; 
  73.     } 
  74.  
  75.     @Override 
  76.     public String getDisplayString(String[] children) { 
  77.         return "Usage: evaluate(String str)"
  78.     } 

第四步:编写测试用例

GenericUDF 给我们提供了一些方法,这些方法可以用来构建测试需要的环境和参数,这样我们就可以测试这些代码了

 

  1. @Test 
  2. public void testAnsjSegFunc() throws HiveException { 
  3.     AnsjSeg udf = new AnsjSeg(); 
  4.     ObjectInspector valueOI0 = PrimitiveObjectInspectorFactory.javaStringObjectInspector; 
  5.     ObjectInspector valueOI1 = PrimitiveObjectInspectorFactory.javaIntObjectInspector; 
  6.     ObjectInspector[] init_args = {valueOI0, valueOI1}; 
  7.     udf.initialize(init_args); 
  8.  
  9.     Text str = new Text("我是测试字符串"); 
  10.  
  11.     GenericUDF.DeferredObject valueObj0 = new GenericUDF.DeferredJavaObject(str); 
  12.     GenericUDF.DeferredObject valueObj1 = new GenericUDF.DeferredJavaObject(0); 
  13.     GenericUDF.DeferredObject[] args = {valueObj0, valueObj1}; 
  14.     ArrayList<Object> res = (ArrayList<Object>) udf.evaluate(args); 
  15.     System.out.println(res); 
  16.  
  17.  
  18. @Test 
  19. public void testIkSegFunc() throws HiveException { 
  20.     IknalyzerSeg udf = new IknalyzerSeg(); 
  21.     ObjectInspector valueOI0 = PrimitiveObjectInspectorFactory.javaStringObjectInspector; 
  22.     ObjectInspector valueOI1 = PrimitiveObjectInspectorFactory.javaIntObjectInspector; 
  23.     ObjectInspector[] init_args = {valueOI0, valueOI1}; 
  24.     udf.initialize(init_args); 
  25.  
  26.     Text str = new Text("我是测试字符串"); 
  27.  
  28.     GenericUDF.DeferredObject valueObj0 = new GenericUDF.DeferredJavaObject(str); 
  29.     GenericUDF.DeferredObject valueObj1 = new GenericUDF.DeferredJavaObject(0); 
  30.     GenericUDF.DeferredObject[] args = {valueObj0, valueObj1}; 
  31.     ArrayList<Object> res = (ArrayList<Object>) udf.evaluate(args); 
  32.     System.out.println(res); 

我们看到加载停用词没有找到,但是整体还是跑起来了,因为读取不到HDFS 上的文件

但是我们第二个样例是不需要从HDFS 上加载停用词信息,所以可以完美的测试运行

注 后来为了能在外部更新文件,我将其放在了HDFS 上,和AnsjSeg 中的代码一样

第五步:创建UDF 并使用

  1. add jar /Users/liuwenqiang/workspace/code/idea/HiveUDF/target/HiveUDF-0.0.4.jar; 
  2. create temporary function ansjSeg as 'com.kingcall.bigdata.HiveUDF.AnsjSeg'
  3. select ansjSeg("我是字符串,你是啥"); 
  4. -- 开启停用词过滤 
  5. select ansjSeg("我是字符串,你是啥",1); 
  6. create temporary function ikSeg as 'com.kingcall.bigdata.HiveUDF.IknalyzerSeg'
  7. select ikSeg("我是字符串,你是啥"); 
  8. select ikSeg("我是字符串,你是啥",1); 

上面方法的第二个参数,就是是否开启停用词过滤,我们使用ikSeg函数演示一下

下面我们尝试获取一下函数的描述信息

如果没有写的话,就是下面的这样的

其它应用场景

通过编写Hive UDF可以轻松帮我们实现大量常见需求,其它应该场景还有:

  • ip地址转地区:将上报的用户日志中的ip字段转化为国家-省-市格式,便于做地域分布统计分析;
  • 使用Hive SQL计算的标签数据,不想编写Spark程序,可以通过UDF在静态代码块中初始化连接池,利用Hive启动的并行MR任务,并行快速导入大量数据到codis中,应用于一些推荐业务;
  • 还有其它sql实现相对复杂的任务,都可以编写永久Hive UDF进行转化;

总结

这一节我们学习了一个比较常见的UDF,通过实现GenericUDF 抽象类来实现,这一节的重点在于代码的实现以及对GenericUDF类中方法的理解

上面的代码实现上有一个问题,那就是关于停用词的加载,就是我们能不能动态加载停用词呢?

 

 

责任编辑:武晓燕 来源: Java大数据与数据仓库
相关推荐

2023-11-28 09:00:00

机器学习少样本学习SetFit

2024-10-30 16:59:57

Python机器学习

2023-11-13 18:37:44

2020-09-25 09:58:37

谷歌Android开发者

2018-03-27 13:33:48

百度

2021-08-30 07:57:26

OpenAttack文本对抗攻击

2016-11-16 15:05:42

情感分析

2023-06-11 17:00:06

2022-10-09 08:00:00

机器学习文本分类算法

2021-03-31 07:39:18

pythonHIVEUDF函数

2016-12-14 09:32:49

FileChanne文件复制

2023-05-06 07:15:59

Hive内置函数工具

2023-07-05 07:36:36

SpringJava代码

2022-01-16 08:00:28

PythonFor循环

2017-04-07 09:00:46

UbuntuVim文本选择

2019-11-06 16:40:31

awkLinux文本分析工具

2020-07-07 10:50:19

Python丄则表达文本

2019-03-21 14:30:15

Linux文本分析命令

2010-07-19 08:51:58

SQL Server

2024-01-19 12:11:31

大语言模型知识图谱人工智能
点赞
收藏

51CTO技术栈公众号