Labs 导读
目前中国移动主要基于2.6GHz频段开展5G网络建设,由于室分系统和宏站共用100MHz频谱,因此室内外同频干扰会对5G用户感知产生不利影响。本文提出了一种基于4G测量报告快速识别室外5G高干扰小区的技术方案,可用于识别5G室内外高干扰小区。研究分析和测试验证表明:该方案可快速发现并定位室内外同频干扰覆盖问题,有助于辅助制定网络优化措施。
5G网络发展初期,用户数量较少,5G的测量数据相关网管功能尚不完善,暂无法通过网络侧数据自动分析覆盖和干扰等问题;同时,人工入户扫楼测试时,存在部分区域无法进入导致测试不完整的问题。本文利用现阶段4G与5G网络共天线建设的特点,提出并验证了一种基于室分系统4G锚点小区的测量报告(MR)数据反推5G室内外同频干扰的方案,可快速发现并定位室外强干扰小区,进而辅助提升5G室内用户感知。
1、技术方案
1.15G网络室内外同频组网干扰分析
目前,中国移动的5G室内外网络均基于2.6GHz频段的100MHz带宽,是同频组网。外场测试数据表明:在5G室内外同频组网情况下,室外同频强干扰信号对室内小区影响较大。从图1和图2可见,当室内电平高于室外电平5dB以上时,室内小区的下载速率损失一般低于15%;当室内电平低于室外电平5dB以上时,室外干扰对室分下载速率性能影响最大则可达45%。
然而,现阶段5G网络用户较少,主设备供应商5G网管的MR功能尚未全面开启,现场测试评估方式成本较高,现有这两种手段均目前均无法支撑5G室外强干扰小区的识别。
1.2基于4G与5G共天线特征的室外高干扰小区识别方案
1.2.1总体思路
根据当前4G与5G共天线建设的现网特点,按照与5G室分小区共RRU的FDD1800锚点4G小区MR数据为基准,可分别估算出室内外5G小区电平,并根据室内外5G电平差的比例识别室外5G强同频干扰小区(图3)。
1.2.2建模方案
相同无线环境下,基于经典的Cost231-Hata模型,1800MHz与2600MHz频段的路径损耗差约5.4dB;选取深圳市某典型室分系统(表1)开展的现场测试(图4和图5)也验证了该模型:与FDD1800锚点站共RRU的5G NR室分小区电平低于锚点站小区约5.5dB。同时,实测结果(图5和图6)也表明4G的3D-MIMO小区共AAU的5G NR宏站小区电平与4G的3D-MIMO小区电平基本一致(均为2600MHz)。
(1)室分系统中5G NR与锚点FDD1800频段的对比测试情况
图4和图5分别是在深圳市某典型室分系统中4G锚点站及5G NR系统的路测情况,表2列出了数据分析结果,可知室分共RRU时,5G NR小区电平低于锚点FDD1800小区约5.5dB。
表2 室分系统1800MHz与2600MHz频段的损耗差
(2)室外宏站4G与5G共AAU时4G 3D-MIMO与5G NR小区电平对比测试情况
图6和图7分别是典型室外宏站中4G锚点站及5G NR系统的路测情况,表3列出了数据分析结果,在本参数配置情况下同一点位上,4G 3D-MIMO小区与5G NR小区的电平基本接近。
表3 室外宏站4G 3D-MIMO与5G NR的损耗差
基于以上分析,本文提出一种基于室分系统4G FDD1800网络 的MR数据快速识别5G室外高干扰小区的方案,步骤如下:
- 筛选出与5G站点室分小区共RRU的锚点FDD1800小区作为基准点。
- 室分FDD1800小区的电平值减去频段引起的路损差(5.5dB),即为室分NR小区的电平。
- 通过开启室分FDD1800的异频测量功能,可获取室分小区周边宏站3D-MIMO小区在室内的电平,该电平即可近似为周边宏站的NR小区电平。
- 基于以上两步分析,利用FDD1800的MR数据,即可分别计算出室内外NR小区电平,再对每个MR采样点计算出的NR电平差值进行汇总分析,即可计算出5G网络室外对室内的强干扰小区。
上述步骤中的基本判断规则可以定义为如下指标:
NR电平差值小于5的采样点占比(1)
其中,In NR RSRP为室分NR小区电平,可用室分FDD1800小区电平(In RSRP)减去5.5dB来近似估算,Out NR RSRP为宏站NR小区电平,可用宏站3D-MIMO小区电平(3D-MIMO RSRP)来近似估算,MR Point为FDD 1800的测量报告总采样点数;同时,根据图1中的测试结论,可将室内外电平差门限设为5。
如果该指标的值越大,说明该小区收到的室外同频干扰就越严重。但需要指出的是:对于部分共站率不如本文所述场景高的情况,须根据当地情况开展图4和图5所示测试,具体估计场景的偏差;同时,上述室分系统中5G NR与锚点FDD1800频段的对比测试情况是在广州典型商业楼宇中开展的。
2、测试验证
2.1验证区域
依据公式(1)可以对室分系统开展筛选式计算。本文在广东深圳密集城区内选取了某营业厅进行验证,该室分站点已经开通5G小区,且使用共pRRU开通的FDD1800作为5G锚点,该营业厅周边已经开通5G宏站以及反开3D-MIMO 的4G小区。
2.2验证方案
根据上面介绍的建模方案,基于MR数据识别的5G宏站干扰小区,结合现场测试情况进行比对,以验证方案的准确性。
- 基于5G室分小区的锚点FDD1800小区MR数据,按照上面方法分别估算室内共模5G NR小区电平和周边宏站5G NR小区电平,进而识别室外NR强干扰小区。
- 开展现场路测,根据测试结果分析识别周边宏站的NR同频小区,并对室内5G下载速率影响情况进行统计。
- 对比以上两步的分析结果,确认基于室分锚点小区MR数据识别5G室外强干扰小区方案准确性。
- 对识别出的强干扰小区进行优化,降低室外信号在室分的同频影响,并再次验证建模方案的准确性,同时对室内速率改善情况进行分析对比。
2.3模型验证
2.3.1基于4G锚点小区MR数据的模型验证
验证区域周边环境如图8所示,在网管侧提取了FDD1800锚点小区的两两异频邻区MR数据,并结合5G室内外同频组网干扰原理,通过总采样点占比识别出有两个室外同频小区与5G NR室分小区存在同频干扰(表4)。
需要说明的是:虽然深圳海王工业D-HRH-1、深圳科技北D-HRH-1的采样点占比也很高,但是由于采样点总数都很少,不建议作为强干扰小区;而深圳科兴科学D-HRH-3、深圳科技北D-HRH-2的总采样点和电平差值小于5采样点的占比都很高,符合干扰小区的特性,这两个小区可识别为室外同频高干扰小区。
2.3.2基于现场5G道路测试的验证
由于5G用户较少,现场对营业厅周边5G宏站小区模拟加载50%,进行测试验证,发现被测室分小区与上述方案所识别出的两个室外宏站小区确实存在同频干扰,造成营业厅门口位置的下载速率恶化严重(图9右红框区域)。
2.3.3验证总结
根据以上验证结果,除去个别MR采样点极少的小区外,基于5G室分锚点的MR数据建模并识别的5G强干扰小区与现场测试强干扰小区基本相符。
2.4优化处理
- 优化调整前:由于5G室分小区与室外宏站邻区存在同频干扰,营业厅整体速率585Mbit/s,营业厅门口位置速率恶化明显,平均速率只有285Mbit/s。
- 优化调整后:针对室外高干扰小区开展了无线射频(RF)优化,将深圳科兴科学D-HRH-3小区的电倾角由4度调至6度、方位角由270度调至260度,将深圳科技北D-HRH-2小区的电倾角由5度调至8度、方位角由60度调至75度),室分小区的平均下载速率提升明显(表5)。
表5 问题路段优化前后测速情况
优化调整后,对营业厅内4G与5G共RRU室分小区再次开展频邻区MR采集,结果(表6)表明:干扰小区差值小于5的采样点占比下降幅度很大,不再属于强干扰小区。
3、结束语
本文提出了一种基于4G网络测量报告数据来快速识别5G室外高干扰同频小区的技术方案,现场测试结果符合理论预期,从而证明在5G覆盖开展初期,可以采用上述5G室外同频干扰源识别技术,高效发现5G同频高干扰小区,该方案避免了大量现场作业排查协调工作,且可以在5G网络负荷抬升之前提前开展网络预优化工作。
【本文为51CTO专栏作者“移动Labs”原创稿件,转载请联系原作者】