打马赛克就安全了吗?AI消除马赛克,上线三天收获近7000星

新闻 人工智能
最近,一个名为 Depix 的 GitHub 项目爆火,上线三天 star 量已经高达 6.9k。项目作者 Sipke Mellema 是一名信息安全顾问。

 还在用马赛克的方式隐藏密码?小心被「看穿」。

像素化(又称马赛克)是一种常见的打码方式,通过降低图像中部分区域的分辨率来隐藏某些关键信息,比如:

打马赛克就安全了吗?AI消除马赛克,上线三天收获近7000星

再比如:

打马赛克就安全了吗?AI消除马赛克,上线三天收获近7000星

看图找马赛克!(找不到请看右侧原图)

但是,在你想隐藏信息的同时,有一些技术却反其道而行之,试图将图片还原为原始状态。

最近,一个名为 Depix 的 GitHub 项目爆火,上线三天 star 量已经高达 6.9k。项目作者 Sipke Mellema 是一名信息安全顾问。

打马赛克就安全了吗?AI消除马赛克,上线三天收获近7000星

项目地址:https://github.com/beurtschipper/Depix

Depix 能够从像素化图像截图中恢复原图中包含的文字密码。该项目适用于使用线性方框滤波器(linear box filter)创建的像素化图像。如下图所示,项目作者给出了像素化图像、恢复之后的效果和原图的对比结果:

打马赛克就安全了吗?AI消除马赛克,上线三天收获近7000星

马赛克打得够严实了,不过 Depix 还是基本解读出了被隐藏的信息。

如何使用

使用 Depix 从像素化图像截图中恢复文字密码,操作也比较简单:

从截图中分割出矩形像素化 block;

在具有相同字体设置(包括文本大小、字体、颜色、hsl)的编辑器中,粘贴待处理字符的德布鲁因(De Bruijn sequence)。

给该序列截图,尽可能使用和像素化图像相同的截图工具。

执行命令:

Depix 算法利用线性方框滤波器单独处理每一个 block 这一事实。它对搜索图像中的每一个 block 执行像素化以寻找直接匹配。

对于大部分像素化图像,Depix 尽量寻找单匹配结果,并假设这些匹配是正确的。至于周围多匹配 block 的结果被看作像素化图像中相同的几何距离,并认为这些匹配也是正确的。该过程重复多次。

在正确的 block 没有更多几何匹配后,Depix 将直接输出所有正确的 block。对于多匹配 block,Depix 将输出所有匹配的平均值。

Depix 背后的算法

像素化常使用线性方框滤波器实现。线性方框滤波器的实现很简单,速度很快,可以并行处理多个 block。

由于线性方框滤波器是一种确定性算法,对同样的值执行像素化通常会产生同样的像素化 block。使用同样位置的 block 对相同文本执行像素化,会得到同样的 block 值。我们可以尝试像素化文本来找出匹配的模式。幸运的是,这对于秘密值的一部分同样奏效。我们可以把每个 block 或 block 组合看作一个子问题。

项目作者没有选择创建潜在字体的查找表。该算法要求在相同背景上具备相同的文本大小和颜色。现代文本编辑器还会添加色调、饱和度和亮度,也就是说存在海量潜在字体。

项目作者给出的解决方案也很简单:使用待处理字符的德布鲁因序列,将其粘贴到相同的编辑器中,然后截图。该截图可以用作相似 block 的查找图像,例如:

打马赛克就安全了吗?AI消除马赛克,上线三天收获近7000星

德布鲁因序列包括待处理字符的所有双字符组合。这很重要,因为一些 block 会重叠两个字符。找出恰当的匹配需要搜索图像中具备相同像素配置的 block。

在以下测试图像中,Depix 算法无法找到「o」的一部分。这是因为在搜索图像中,搜索 block 还包含下一个字母(「d」)的一部分,但在原始图像中这里有个空格。

打马赛克就安全了吗?AI消除马赛克,上线三天收获近7000星

创建字母的德布鲁因序列时加上空格显然会带来同样的问题:算法无法找到后续字母的恰当 block。有空格又有字母的图像需要更长的搜索时间,但结果也更好。

对于大部分像素化图像而言,Depix 似乎能够找到 block 的单匹配结果,并假设这是正确的。然后将其周围多匹配 block 的匹配结果看作在像素化图像中处于相同的几何距离,并假设这些匹配也是正确的。

在正确的 block 没有更多几何匹配后,Depix 直接输出所有正确的 block。对于多匹配 block,Depix 将输出所有匹配的平均值。虽然 Depix 的输出并不完美,但已经算不错了。

下图展示了包含随机字符的测试图像的去像素化结果,大部分字符被正确读取:

对这个项目感兴趣的读者,可以自行尝试。

以后截图时给敏感信息打码,看来不能简单地用「马赛克了」。

 

责任编辑:张燕妮 来源: 机器之心Pro
相关推荐

2022-09-07 08:37:34

DCGAN图片AI

2021-02-24 10:19:43

人工智能马赛克

2021-05-31 10:30:46

密码马赛克工具

2009-08-17 13:07:27

C#马赛克算法

2018-07-03 08:50:12

人工智能深度学习CNN

2015-04-30 10:29:32

WOC视频会议优化方案深信服

2023-11-22 11:20:38

2015-10-15 17:31:14

微软

2018-09-12 16:30:45

Python编程语言马赛克画

2020-12-02 15:07:23

算法开源AI

2021-01-04 05:36:23

AI人工智能深度学习

2011-08-18 15:56:03

深信服广域网优化

2012-05-25 14:41:19

JavaScript

2021-03-01 11:37:31

人工智能PULSE

2017-02-10 18:13:46

谷歌大脑人工智能

2020-05-07 11:03:32

AI 马赛克工具

2012-03-16 16:33:35

视频会议马赛克深信服

2020-06-18 11:10:16

AI人工智能神经网络

2021-02-24 11:25:44

人工智能AI算法马赛克

2018-08-13 10:22:09

点赞
收藏

51CTO技术栈公众号